[Dataset] Add human_eval/mbpp pro (#2092)

* add bench

* update

* bug fix

* time update

* add index

* fix repeat bug
This commit is contained in:
Dongsheng Zhu 2025-05-12 18:38:13 +08:00 committed by GitHub
parent 345674f700
commit 2c79dc5227
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
18 changed files with 593 additions and 106 deletions

View File

@ -611,6 +611,12 @@
paper: https://dl.acm.org/doi/pdf/10.1145/3580305.3599790 paper: https://dl.acm.org/doi/pdf/10.1145/3580305.3599790
configpath: opencompass/configs/datasets/humanevalx/humanevalx_gen.py configpath: opencompass/configs/datasets/humanevalx/humanevalx_gen.py
configpath_llmjudge: '' configpath_llmjudge: ''
- humaneval_pro:
name: HumanEval Pro
category: Code
paper: https://arxiv.org/abs/2412.21199
configpath: opencompass/configs/datasets/humaneval_pro/humaneval_pro_gen.py
configpath_llmjudge: ''
- hungarian_math: - hungarian_math:
name: Hungarian_Math name: Hungarian_Math
category: Math category: Math
@ -695,6 +701,12 @@
paper: '' paper: ''
configpath: opencompass/configs/datasets/mbpp_plus/mbpp_plus_gen.py configpath: opencompass/configs/datasets/mbpp_plus/mbpp_plus_gen.py
configpath_llmjudge: '' configpath_llmjudge: ''
- mbpp_pro:
name: MBPP Pro
category: Code
paper: https://arxiv.org/abs/2412.21199
configpath: opencompass/configs/datasets/mbpp_pro/mbpp_pro_gen.py
configpath_llmjudge: ''
- mgsm: - mgsm:
name: MGSM name: MGSM
category: Language / Math category: Language / Math

View File

@ -0,0 +1,17 @@
# HumanEval pro
## OC results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 65 |
| qwen2.5-14b-instruct-hf | 67 |
| deepseek-v2-lite-chat-hf | 35 |
## CodeEval-pro results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 65 |
| qwen2.5-14b-instruct-hf | 65 |
| deepseek-v2-lite-chat-hf | 28 |

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .humaneval_pro_gen_3dc067 import humanevalpro_datasets # noqa: F401, F403

View File

@ -0,0 +1,46 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalevalProDataset, HumanevalProEvaluator, humaneval_postprocess_v2
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
humanevalpro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
humanevalpro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humanevalpro_eval_cfg = dict(
evaluator=dict(type=HumanevalProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space')
)
humanevalpro_datasets = [
dict(
abbr='humaneval_pro',
type=HumanevalevalProDataset,
path='opencompass/humaneval_pro',
reader_cfg=humanevalpro_reader_cfg,
infer_cfg=humanevalpro_infer_cfg,
eval_cfg=humanevalpro_eval_cfg,)
]

View File

@ -0,0 +1,48 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalevalProDataset, HumanevalProEvaluator, humaneval_postprocess_v2
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
humanevalpro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
humanevalpro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humanevalpro_eval_cfg = dict(
evaluator=dict(type=HumanevalProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space')
)
humanevalpro_datasets = [
dict(
abbr='humaneval_pro',
type=HumanevalevalProDataset,
path='opencompass/humaneval_pro',
reader_cfg=humanevalpro_reader_cfg,
infer_cfg=humanevalpro_infer_cfg,
eval_cfg=humanevalpro_eval_cfg,
n=5,
k=3)
]

View File

@ -0,0 +1,17 @@
# MBPP pro
## OC results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 66 |
| qwen2.5-14b-instruct-hf | 64 |
| deepseek-v2-lite-chat-hf | 36 |
## CodeEval-pro results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 65 |
| qwen2.5-14b-instruct-hf | 65 |
| deepseek-v2-lite-chat-hf | 39 |

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .mbpp_pro_gen_3dc067 import mbpppro_datasets # noqa: F401, F403

View File

@ -0,0 +1,46 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MBPPProDataset, MBPPProEvaluator
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
mbpppro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
mbpppro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
mbpppro_eval_cfg = dict(
evaluator=dict(type=MBPPProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space'),
)
mbpppro_datasets = [
dict(
abbr='mbpp_pro',
type=MBPPProDataset,
path='opencompass/mbpp_pro',
reader_cfg=mbpppro_reader_cfg,
infer_cfg=mbpppro_infer_cfg,
eval_cfg=mbpppro_eval_cfg)
]

View File

@ -0,0 +1,48 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MBPPProDataset, MBPPProEvaluator
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
mbpppro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
mbpppro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
mbpppro_eval_cfg = dict(
evaluator=dict(type=MBPPProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space'),
)
mbpppro_datasets = [
dict(
abbr='mbpp_pro',
type=MBPPProDataset,
path='opencompass/mbpp_pro',
reader_cfg=mbpppro_reader_cfg,
infer_cfg=mbpppro_infer_cfg,
eval_cfg=mbpppro_eval_cfg,
n=5,
k=3)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .multiple_top_ten_gen_f44aaf import multiple_datasets # noqa: F401, F403

View File

@ -32,7 +32,6 @@ multiple_datasets = [
type=MultiplEDataset, type=MultiplEDataset,
abbr=f'humaneval-multiple-{lang}', abbr=f'humaneval-multiple-{lang}',
language=lang, language=lang,
num_repeats=1,
path='opencompass/multipl_e', path='opencompass/multipl_e',
tag='humaneval', tag='humaneval',
reader_cfg=multiple_reader_cfg, reader_cfg=multiple_reader_cfg,
@ -46,7 +45,6 @@ multiple_datasets += [
type=MultiplEDataset, type=MultiplEDataset,
abbr=f'mbpp-multiple-{lang}', abbr=f'mbpp-multiple-{lang}',
language=lang, language=lang,
num_repeats=1,
path='opencompass/multipl_e', path='opencompass/multipl_e',
tag='mbpp', tag='mbpp',
reader_cfg=multiple_reader_cfg, reader_cfg=multiple_reader_cfg,

View File

@ -0,0 +1,58 @@
# Select the 10 most popular programming languages from MultiPL-E to compose the test set.
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MultiplEDataset, MultiplEEvaluator
_TOP_TEN_LANGUAGE_ = ['cpp']
multiple_reader_cfg = dict(input_columns=['language', 'prompt'], output_column='tests')
multiple_infer_cfg = dict(
prompt_template=dict(type=PromptTemplate, template='Based on the provided {language} code snippet, complete the subsequent content. The initial part of the completed code must match the provided code snippet exactly:\n{prompt}'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
multiple_eval_cfg = {
lang: dict(
evaluator=dict(
type=MultiplEEvaluator,
language=lang,
ip_address='https://opencompass-multiple-evaluator.hf.space',
),
pred_role='BOT',
) for lang in _TOP_TEN_LANGUAGE_
}
multiple_datasets = [
dict(
type=MultiplEDataset,
abbr=f'humaneval-multiple-{lang}',
language=lang,
path='opencompass/multipl_e',
tag='humaneval',
reader_cfg=multiple_reader_cfg,
infer_cfg=multiple_infer_cfg,
eval_cfg=multiple_eval_cfg[lang],
n=5,
k=3
) for lang in _TOP_TEN_LANGUAGE_
]
multiple_datasets += [
dict(
type=MultiplEDataset,
abbr=f'mbpp-multiple-{lang}',
language=lang,
path='opencompass/multipl_e',
tag='mbpp',
reader_cfg=multiple_reader_cfg,
infer_cfg=multiple_infer_cfg,
eval_cfg=multiple_eval_cfg[lang],
n=5,
k=3
) for lang in _TOP_TEN_LANGUAGE_
]

View File

@ -64,6 +64,7 @@ from .hle import * # noqa: F401, F403
from .huggingface import * # noqa: F401, F403 from .huggingface import * # noqa: F401, F403
from .humaneval import * # noqa: F401, F403 from .humaneval import * # noqa: F401, F403
from .humaneval_multi import * # noqa: F401, F403 from .humaneval_multi import * # noqa: F401, F403
from .humaneval_pro import * # noqa: F401, F403
from .humanevalx import * # noqa: F401, F403 from .humanevalx import * # noqa: F401, F403
from .hungarian_math import * # noqa: F401, F403 from .hungarian_math import * # noqa: F401, F403
from .IFEval.ifeval import IFEvalDataset, IFEvaluator # noqa: F401, F403 from .IFEval.ifeval import IFEvalDataset, IFEvaluator # noqa: F401, F403
@ -96,6 +97,7 @@ from .math401 import * # noqa: F401, F403
from .math_intern import * # noqa: F401, F403 from .math_intern import * # noqa: F401, F403
from .mathbench import * # noqa: F401, F403 from .mathbench import * # noqa: F401, F403
from .mbpp import * # noqa: F401, F403 from .mbpp import * # noqa: F401, F403
from .mbpp_pro import * # noqa: F401, F403
from .medbench import * # noqa: F401, F403 from .medbench import * # noqa: F401, F403
from .MedCalc_Bench import MedCalc_BenchDataset # noqa: F401 from .MedCalc_Bench import MedCalc_BenchDataset # noqa: F401
from .MedCalc_Bench import MedCalcOfficial_Evaluator # noqa: F401 from .MedCalc_Bench import MedCalcOfficial_Evaluator # noqa: F401

View File

@ -0,0 +1,81 @@
# flake8: noqa: E501s
import json
from typing import Dict, List
from datasets import Dataset
from opencompass.openicl.icl_evaluator.code_evaluator import CodeEvaluator
from opencompass.utils import get_data_path
from .base import BaseDataset
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
class HumanevalevalProDataset(BaseDataset):
@staticmethod
def load(path, local_mode=False):
path = get_data_path(path, local_mode=local_mode)
dataset = []
with open(path, encoding='utf-8') as f:
raw_data = json.load(f)
for data in raw_data:
dataset.append(data)
return Dataset.from_list(dataset)
class HumanevalProEvaluator(CodeEvaluator):
def score(self, predictions: List, references: List,
test_set: Dataset) -> Dict:
if len(predictions) != len(references):
return {
'error':
'predictions and references have different '
f'length. len(predictions): {len(predictions)}, '
f'len(references): {len(references)}'
}
test_set = test_set.to_pandas()
# Use the first column as the unique identifier
test_set_origin = test_set.drop_duplicates(subset=test_set.columns[0])
# 1. Prepare data for all test cases
all_test_cases, prompts = [], []
for i in range(len(test_set_origin)):
test_case = test_set_origin.iloc[i]
completion = predictions[i]
# Process code completions
processed_completion = self._process_completions(completion)
code = processed_completion + '\n' + test_case['test_code']
sub_data_dict = {
'name': int(test_case['id']),
'language': self.language,
'code': code,
}
all_test_cases.append(sub_data_dict)
prompt = PROMPT_WRAPPER.format(
raw_problem=test_case['raw_problem'],
new_problem=test_case['new_problem'])
prompts.append(prompt)
# 2. Send all test cases to the evaluation service
success, outputs, error_message = self._evaluate(all_test_cases)
if not success:
return {'error': error_message}
# 3. Process the returned results
return self._process_results(outputs, prompts, len(test_set_origin))

View File

@ -0,0 +1,81 @@
# flake8: noqa: E501
import json
from typing import Dict, List
from datasets import Dataset
from opencompass.openicl.icl_evaluator.code_evaluator import CodeEvaluator
from opencompass.utils import get_data_path
from .base import BaseDataset
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
class MBPPProDataset(BaseDataset):
@staticmethod
def load(path, local_mode=False):
path = get_data_path(path, local_mode=local_mode)
print(path)
dataset = []
with open(path, encoding='utf-8') as f:
for line in f:
dataset.append(json.loads(line.strip()))
return Dataset.from_list(dataset)
class MBPPProEvaluator(CodeEvaluator):
def score(self, predictions: List, references: List,
test_set: Dataset) -> Dict:
if len(predictions) != len(references):
return {
'error':
'predictions and references have different '
f'length. len(predictions): {len(predictions)}, '
f'len(references): {len(references)}'
}
test_set = test_set.to_pandas()
# Use the first column as the unique identifier
test_set_origin = test_set.drop_duplicates(subset=test_set.columns[0])
# 1. Prepare data for all test cases
all_test_cases, prompts = [], []
for i in range(len(test_set_origin)):
test_case = test_set_origin.iloc[i]
completion = predictions[i]
# Process code completions
processed_completion = self._process_completions(completion)
code = processed_completion + '\n' + test_case['test_code']
sub_data_dict = {
'name': int(test_case['id']),
'language': self.language,
'code': code,
}
all_test_cases.append(sub_data_dict)
prompt = PROMPT_WRAPPER.format(
raw_problem=test_case['raw_problem'],
new_problem=test_case['new_problem'])
prompts.append(prompt)
# 2. Send all test cases to the evaluation service
success, outputs, error_message = self._evaluate(all_test_cases)
if not success:
return {'error': error_message}
# 3. Process the returned results
return self._process_results(outputs, prompts, len(test_set_origin))

View File

@ -1,3 +1,4 @@
import difflib
import json import json
import os.path as osp import os.path as osp
@ -28,7 +29,6 @@ class MultiplEDataset(BaseDataset):
@staticmethod @staticmethod
def load(path: str, def load(path: str,
language: str, language: str,
num_repeats: int = 1,
tag: str = 'humaneval', tag: str = 'humaneval',
local_mode: bool = False): local_mode: bool = False):
"""Load dataset for pass k mode. """Load dataset for pass k mode.
@ -56,8 +56,7 @@ class MultiplEDataset(BaseDataset):
dataset = [] dataset = []
with open(file_path, 'r', encoding='utf-8') as f: with open(file_path, 'r', encoding='utf-8') as f:
for line in f: for line in f:
dataset.extend( dataset.append(json.loads(line.strip()))
[json.loads(line.strip()) for _ in range(num_repeats)])
return Dataset.from_list(dataset) return Dataset.from_list(dataset)
@ -84,20 +83,56 @@ class MultiplEEvaluator(CodeEvaluator):
min_stop_index = stop_index min_stop_index = stop_index
return decoded_string[:min_stop_index] return decoded_string[:min_stop_index]
def _process_completions(self, test_case, completions): def _remove_prefix(self,
prompt: str,
completion: str,
threshold: float = 0.95) -> str:
"""Determine the truncation point in the completion based on the last
line of the prompt, remove all content before that line in the
completion, and return the completion string after removing the prefix.
This is done to convert chatbot-style inference mode to completion
mode.
Args:
prompt (str): The prompt text.
completion (str): The completion text.
threshold (float): Line similarity threshold.
Returns:
str: The completion string after removing the prefix.
"""
prompt_lines = prompt.splitlines()
completion_lines = completion.splitlines()
if not prompt_lines:
return completion
last_prompt_line = prompt_lines[-1]
cut_index = -1
for i, completion_line in enumerate(completion_lines):
similarity = difflib.SequenceMatcher(None, last_prompt_line,
completion_line).ratio()
if similarity >= threshold:
cut_index = i
break
if cut_index != -1:
return '\n'.join(completion_lines[cut_index + 1:])
else:
return completion
def _process_completions(self, test_case, completion):
"""Process completions with a test case. """Process completions with a test case.
Args: Args:
test_case: A test case. test_case (dict): A test case containing prompt and stop tokens.
completions: A list of completions. completion (str): The generated code completion.
Returns: Returns:
A list of processed completions. str: Processed code completion.
""" """
processed_completions = [] post_comp = self._extract_code(completion)
for comp in completions: post_comp = self._remove_prefix(test_case['prompt'], post_comp)
comp = self._extract_code(comp) post_comp = self._stop_at_stop_token(post_comp,
post_comp = self._remove_prefix(test_case['prompt'], comp) test_case['stop_tokens'])
post_comp = self._stop_at_stop_token(post_comp, return post_comp
test_case['stop_tokens'])
processed_completions.append(post_comp)
return processed_completions

View File

@ -1,12 +1,12 @@
# flake8: noqa: E501 # flake8: noqa: E501
import difflib
import os import os
import re import re
import tempfile import tempfile
import time import time
from typing import Any, Dict, List, Optional, Tuple, Union from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from datasets import Dataset from datasets import Dataset
from gradio_client import Client from gradio_client import Client
@ -24,9 +24,9 @@ class CodeEvaluator(BaseEvaluator):
""" """
def __init__(self, def __init__(self,
language: str, language: str = 'py',
ip_address: str = 'localhost', ip_address: str = 'localhost',
retry: int = 3) -> None: retry: int = 5) -> None:
"""Initialize the CodeEvaluator. """Initialize the CodeEvaluator.
Args: Args:
@ -71,6 +71,7 @@ class CodeEvaluator(BaseEvaluator):
- output (dict/list/str): Evaluation results or error message - output (dict/list/str): Evaluation results or error message
""" """
try: try:
import requests
temp_file_path = None temp_file_path = None
# Handle file path input # Handle file path input
if isinstance(input_data, str): if isinstance(input_data, str):
@ -83,7 +84,15 @@ class CodeEvaluator(BaseEvaluator):
input_data = temp_file_path input_data = temp_file_path
# Send to evaluation service # Send to evaluation service
result = self.client.predict(input_data, api_name='/evaluate') try:
result = self.client.predict(input_data, api_name='/evaluate')
except Exception as e:
# Catch timeout and other exceptions
if 'timed out' in str(e).lower() or 'timeout' in str(
e).lower():
return False, f'Request to code eval service timed out: {e}'
else:
raise
# Process the result # Process the result
if isinstance(result, (dict, list)): if isinstance(result, (dict, list)):
@ -107,63 +116,16 @@ class CodeEvaluator(BaseEvaluator):
except: # noqa: E722 except: # noqa: E722
pass pass
def _remove_prefix(self, def _process_completions(self, completion: str) -> list:
prompt: str, """Process code completions to extract the relevant code.
completion: str,
threshold: float = 0.95) -> str:
"""Determine the truncation point in the completion based on the last
line of the prompt, remove all content before that line in the
completion, and return the completion string after removing the prefix.
This is done to convert chatbot-style inference mode to completion
mode.
Args: Args:
prompt (str): The prompt text. completion (str): Code completion string.
completion (str): The completion text.
threshold (float): Line similarity threshold.
Returns: Returns:
str: The completion string after removing the prefix. list: List of processed code completions.
""" """
prompt_lines = prompt.splitlines() post_comp = self._extract_code(completion)
completion_lines = completion.splitlines() return post_comp
if not prompt_lines:
return completion
last_prompt_line = prompt_lines[-1]
cut_index = -1
for i, completion_line in enumerate(completion_lines):
similarity = difflib.SequenceMatcher(None, last_prompt_line,
completion_line).ratio()
if similarity >= threshold:
cut_index = i
break
if cut_index != -1:
return '\n'.join(completion_lines[cut_index + 1:])
else:
return completion
def _process_completions(self, test_case: dict, completions: list) -> list:
"""Process code completion list, which typically involves extracting
code, removing repetitive prefixes caused by chatbot mode, and other
steps to ensure the model-generated code can be compiled successfully.
Args:
test_case (dict): Dictionary containing test case information including:
completions (list): List of code completions generated by the model.
Returns:
list: Processed code completion list.
"""
processed_completions = []
for comp in completions:
comp = self._extract_code(comp)
post_comp = self._remove_prefix(test_case['prompt'], comp)
processed_completions.append(post_comp)
return processed_completions
def _evaluate( def _evaluate(
self, input_data: Union[Dict, List] self, input_data: Union[Dict, List]
@ -186,7 +148,7 @@ class CodeEvaluator(BaseEvaluator):
succeed, output = self._code_eval_service(input_data) succeed, output = self._code_eval_service(input_data)
if not succeed: if not succeed:
num_retry += 1 num_retry += 1
time.sleep(10) time.sleep(30)
else: else:
break break
@ -195,6 +157,31 @@ class CodeEvaluator(BaseEvaluator):
return True, output, None return True, output, None
def _process_results(self, outputs: List, prompts: List,
total_count: int) -> Dict:
"""Process the evaluation results.
Args:
outputs (list): List of evaluation results for each test case.
prompts (list): List of prompts used for each test case.
total_count (int): Total number of test cases.
Returns:
dict: Processed results including:
- pass@1: Percentage of test cases passed
- details: Detailed results for each test case
"""
details = []
correct = 0
for output, prompt in zip(outputs, prompts):
output['prompt'] = prompt
if output.get('status') == 'OK':
output['correct'] = True
correct += 1
else:
output['correct'] = False
details.append(output)
return {f'pass@1': 100 * correct / total_count, 'details': details}
def score(self, predictions: List, references: List, def score(self, predictions: List, references: List,
test_set: Dataset) -> Dict: test_set: Dataset) -> Dict:
"""Score code generation predictions against references. """Score code generation predictions against references.
@ -221,28 +208,25 @@ class CodeEvaluator(BaseEvaluator):
test_set = test_set.to_pandas() test_set = test_set.to_pandas()
# Use the first column as the unique identifier # Use the first column as the unique identifier
test_set_origin = test_set.drop_duplicates(subset=test_set.columns[0]) test_set_origin = test_set.drop_duplicates(subset=test_set.columns[0])
num_repeats = int(len(test_set) / len(test_set_origin))
# 1. Prepare data for all test cases # 1. Prepare data for all test cases
all_test_cases = [] all_test_cases, prompts = [], []
for i in range(len(test_set_origin)): for i in range(len(test_set_origin)):
test_case = test_set_origin.iloc[i] test_case = test_set_origin.iloc[i]
completions = predictions[i * num_repeats:(i + 1) * num_repeats] completion = predictions[i]
# Process code completions # Process code completions
processed_completions = self._process_completions( processed_completion = self._process_completions(
test_case, completions) test_case, completion)
code = test_case[
result_dict = { 'prompt'] + processed_completion + '\n' + test_case['tests']
sub_data_dict = {
'name': test_case['name'], 'name': test_case['name'],
'language': test_case['language'], 'language': test_case['language'],
'prompt': test_case['prompt'], 'code': code
'tests': test_case['tests'],
'processed_completions': processed_completions,
'completions': completions
} }
all_test_cases.append(sub_data_dict)
all_test_cases.append(result_dict) prompts.append(test_case['prompt'])
# 2. Send all test cases to the evaluation service # 2. Send all test cases to the evaluation service
success, outputs, error_message = self._evaluate(all_test_cases) success, outputs, error_message = self._evaluate(all_test_cases)
@ -250,18 +234,4 @@ class CodeEvaluator(BaseEvaluator):
return {'error': error_message} return {'error': error_message}
# 3. Process the returned results # 3. Process the returned results
details = [] return self._process_results(outputs, prompts, len(test_set_origin))
correct = 0
for output in outputs:
if output.get('status') == 'OK':
output['correct'] = True
correct += 1
else:
output['correct'] = False
details.append(output)
return {
f'pass@{num_repeats}': 100 * correct / len(test_set_origin),
'details': details
}

View File

@ -451,7 +451,16 @@ DATASETS_MAPPING = {
"hf_id": "", "hf_id": "",
"local": "./data/nejmaibench/NEJM_All_Questions_And_Answers.csv", "local": "./data/nejmaibench/NEJM_All_Questions_And_Answers.csv",
}, },
"opencompass/humaneval_pro": {
"ms_id": "",
"hf_id": "",
"local": "./data/humaneval_pro/humaneval_pro.json",
},
"opencompass/mbpp_pro": {
"ms_id": "",
"hf_id": "",
"local": "./data/mbpp_pro/mbpp_pro.json",
},
} }
DATASETS_URL = { DATASETS_URL = {
@ -808,6 +817,13 @@ DATASETS_URL = {
"url": "url":
"http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/nejmaibench.zip", "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/nejmaibench.zip",
"md5": "e6082cae3596b3ebea73e23ba445b99e" "md5": "e6082cae3596b3ebea73e23ba445b99e"
} },
"humaneval_pro": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/humaneval_pro.zip",
"md5": "4c6fe556e84e905e4f0902d699e46de5",
},
"mbpp_pro": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/mbpp_pro.zip",
"md5": "eac330b8a0a8687f006265c9383503ce",
},
} }