mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
parent
83b9fd9eaa
commit
1fa62c4a42
30
configs/datasets/subjective/wildbench/wildbench.md
Normal file
30
configs/datasets/subjective/wildbench/wildbench.md
Normal file
@ -0,0 +1,30 @@
|
||||
# Wildbench
|
||||
|
||||
## Prepare the dataset
|
||||
|
||||
We support the [wildbench dataset](https://github.com/allenai/WildBench), developed by Lin et al. Please refer to their repo for more detail.
|
||||
|
||||
You have to download our preprocessed dataset. The format of dir should be like:
|
||||
|
||||
```
|
||||
wildbench
|
||||
---wildbench.jsonl
|
||||
---gpt4
|
||||
------wildbench.json
|
||||
---claude
|
||||
------wildbench.json
|
||||
---llama2-70b
|
||||
------wildbench.json
|
||||
```
|
||||
|
||||
The wildbench.jsonl is the preprocessed dataset, and the other three are the reference, used for score.
|
||||
|
||||
Once you download the dataset, you have to modify the path defined in `configs/datasets/subjective/wildbench/wildbench_pair_judge.py` and `configs/datasets/subjective/wildbench/wildbench_single_judge.py`
|
||||
|
||||
## Run
|
||||
|
||||
We have provide the script for wildbench in `configs/eval_subjective_wildbench_pair.py` and `configs/eval_subjective_wildbench_single.py`.
|
||||
|
||||
Please modify the path for `give_pred` (line 171) in `configs/eval_subjective_wildbench_pair.py` to your path.
|
||||
|
||||
Note that if you test the wildbench with other models, please set the max_out_lens to 4096.
|
@ -0,0 +1,46 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import ChatInferencer, GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import LMEvaluator
|
||||
from opencompass.datasets import WildBenchDataset
|
||||
|
||||
|
||||
subjective_reader_cfg = dict(
|
||||
input_columns=['dialogue', 'prompt'],
|
||||
output_column='judge',
|
||||
)
|
||||
|
||||
|
||||
data_path ='./data/WildBench/wildbench.jsonl'
|
||||
|
||||
subjective_datasets = []
|
||||
subjective_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template="""{dialogue}"""
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=ChatInferencer, max_seq_len=4096, max_out_len=512, infer_mode='last'),
|
||||
)
|
||||
|
||||
subjective_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=LMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template="""{prompt}"""
|
||||
),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
subjective_datasets.append(
|
||||
dict(
|
||||
abbr='wildbench',
|
||||
type=WildBenchDataset,
|
||||
path=data_path,
|
||||
mode='pair',
|
||||
reader_cfg=subjective_reader_cfg,
|
||||
infer_cfg=subjective_infer_cfg,
|
||||
eval_cfg=subjective_eval_cfg
|
||||
))
|
@ -0,0 +1,47 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import ChatInferencer, GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import LMEvaluator
|
||||
from opencompass.datasets import WildBenchDataset
|
||||
|
||||
|
||||
subjective_reader_cfg = dict(
|
||||
input_columns=['dialogue', 'prompt'],
|
||||
output_column='judge',
|
||||
)
|
||||
|
||||
data_path ='./data/WildBench/wildbench.jsonl'
|
||||
|
||||
subjective_datasets = []
|
||||
|
||||
# the question is a list, how to process it
|
||||
subjective_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template="""{dialogue}"""
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=ChatInferencer, max_seq_len=4096, max_out_len=512, infer_mode='last'),
|
||||
)
|
||||
|
||||
subjective_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=LMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template="""{prompt}"""
|
||||
),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
subjective_datasets.append(
|
||||
dict(
|
||||
abbr='wildbench',
|
||||
type=WildBenchDataset,
|
||||
path=data_path,
|
||||
mode='single',
|
||||
reader_cfg=subjective_reader_cfg,
|
||||
infer_cfg=subjective_infer_cfg,
|
||||
eval_cfg=subjective_eval_cfg
|
||||
))
|
180
configs/eval_subjective_wildbench_pair.py
Normal file
180
configs/eval_subjective_wildbench_pair.py
Normal file
@ -0,0 +1,180 @@
|
||||
from mmengine.config import read_base
|
||||
|
||||
with read_base():
|
||||
# from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import subjective_datasets
|
||||
from .datasets.subjective.wildbench.wildbench_pair_judge import subjective_datasets
|
||||
from .models.openai.gpt_4 import models as gpt4_models
|
||||
from .models.hf_llama.hf_llama2_70b_chat import models as llama2_models
|
||||
# from .models.gemma.hf_gemma_2b_it import models
|
||||
# from .models.hf_llama.hf_llama3_70b_instruct import models as llama3_model
|
||||
# # from .models.hf_internlm.hf_internlm2_chat_7b import models
|
||||
# from .models.yi.hf_yi_1_5_34b_chat import models as yi_model
|
||||
# from .models.qwen.hf_qwen1_5_72b_chat import models as qwen_model
|
||||
|
||||
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
|
||||
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
||||
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
||||
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
|
||||
from opencompass.runners import LocalRunner
|
||||
from opencompass.runners import SlurmSequentialRunner
|
||||
from opencompass.tasks import OpenICLInferTask
|
||||
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
||||
from opencompass.summarizers import WildBenchPairSummarizer
|
||||
from opencompass.models.claude_api.claude_api import Claude
|
||||
from opencompass.models import HuggingFacewithChatTemplate
|
||||
|
||||
|
||||
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
|
||||
|
||||
api_meta_template = dict(
|
||||
round=[
|
||||
dict(role='SYSTEM', api_role='SYSTEM'),
|
||||
dict(role='HUMAN', api_role='HUMAN'),
|
||||
dict(role='BOT', api_role='BOT', generate=True),
|
||||
]
|
||||
)
|
||||
|
||||
# _meta_template = dict(
|
||||
# round=[
|
||||
# dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'),
|
||||
# dict(role='BOT', begin='\n<|im_start|>assistant\n', end='<|im_end|>', generate=True),
|
||||
# ],
|
||||
# )
|
||||
# -------------Inference Stage ----------------------------------------
|
||||
# For subjective evaluation, we often set do sample for models
|
||||
|
||||
models = [
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='llama-3-8b-instruct-hf',
|
||||
path='meta-llama/Meta-Llama-3-8B-Instruct',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
stop_words=['<|end_of_text|>', '<|eot_id|>'],
|
||||
),
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='yi-1.5-6b-chat-hf',
|
||||
path='01-ai/Yi-1.5-6B-Chat',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
),
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='qwen1.5-7b-chat-hf',
|
||||
path='Qwen/Qwen1.5-7B-Chat',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='llama-3-70b-instruct-hf',
|
||||
# path='meta-llama/Meta-Llama-3-70B-Instruct',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=4),
|
||||
# stop_words=['<|end_of_text|>', '<|eot_id|>'],
|
||||
# ),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='yi-1.5-34b-chat-hf',
|
||||
# path='01-ai/Yi-1.5-34B-Chat',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=2),
|
||||
# ),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='qwen1.5-72b-chat-hf',
|
||||
# path='Qwen/Qwen1.5-72B-Chat',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=8),
|
||||
# )
|
||||
]
|
||||
|
||||
datasets = [*subjective_datasets]
|
||||
|
||||
# -------------Evalation Stage ----------------------------------------
|
||||
|
||||
## ------------- JudgeLLM Configuration
|
||||
judge_models = [dict(
|
||||
abbr='GPT4-Turbo',
|
||||
type=OpenAI,
|
||||
path='gpt-4-0613', # To compare with the official leaderboard, please use gpt4-0613
|
||||
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
|
||||
meta_template=api_meta_template,
|
||||
query_per_second=16,
|
||||
max_out_len=2048,
|
||||
max_seq_len=2048,
|
||||
batch_size=8,
|
||||
temperature=0,
|
||||
)]
|
||||
|
||||
gpt4 = dict(
|
||||
abbr='gpt4-turbo',
|
||||
type=OpenAI,
|
||||
path='gpt-4-0409-preview',
|
||||
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
|
||||
meta_template=api_meta_template,
|
||||
query_per_second=1,
|
||||
max_out_len=2048,
|
||||
max_seq_len=4096,
|
||||
batch_size=4,
|
||||
retry=20,
|
||||
temperature=1,
|
||||
) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions
|
||||
|
||||
claude = dict(abbr='HaiKu',
|
||||
type=Claude,
|
||||
path='claude-2',
|
||||
key='YOUR_CLAUDE_KEY',
|
||||
query_per_second=1,
|
||||
max_out_len=2048, max_seq_len=2048, batch_size=2,
|
||||
)
|
||||
## single evaluation
|
||||
# eval = dict(
|
||||
# partitioner=dict(type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000, mode='singlescore', models=models, judge_models=judge_models),
|
||||
# runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask)),
|
||||
# )
|
||||
infer = dict(
|
||||
partitioner=dict(type=SizePartitioner, max_task_size=1000, strategy='split'),
|
||||
runner=dict(
|
||||
type=SlurmSequentialRunner,
|
||||
max_num_workers=64,
|
||||
quotatype='reserved',
|
||||
partition='llmeval',
|
||||
task=dict(type=OpenICLInferTask)),
|
||||
)
|
||||
|
||||
eval = dict(
|
||||
partitioner=dict(
|
||||
type=SubjectiveNaivePartitioner,
|
||||
mode='m2n', # m个模型 与 n个模型进行对战
|
||||
infer_order='random',
|
||||
# 在m2n模式下,需要指定base_models和compare_models,将会对base_models和compare_models生成对应的两两pair(去重且不会与自身进行比较)
|
||||
base_models = [*llama2_models, gpt4, claude], # 用于对比的基线模型
|
||||
compare_models = models, # 待评测模型
|
||||
judge_models=judge_models
|
||||
),
|
||||
runner=dict(
|
||||
type=LocalRunner,
|
||||
# partition='llmeval',
|
||||
# quotatype='auto',
|
||||
max_num_workers=3,
|
||||
task=dict(
|
||||
type=SubjectiveEvalTask
|
||||
)),
|
||||
given_pred = [{'abbr':'gpt4-turbo', 'path':'./data/WildBench/gpt4'},
|
||||
{'abbr': 'llama-2-70b-chat-hf', 'path':'./data/WildBench/llama2-70b'},
|
||||
{'abbr': 'HaiKu', 'path':'./data/WildBench/claude'},
|
||||
{'abbr': 'llama-2-70b-chat-turbomind', 'path':'./data/WildBench/llama2-70b'},
|
||||
{'abbr': 'llama-2-70b-chat-vllm', 'path':'./data/WildBench/llama2-70b'}]
|
||||
)
|
||||
|
||||
summarizer = dict(type=WildBenchPairSummarizer)
|
||||
|
||||
work_dir = 'outputs/wildbench/'
|
135
configs/eval_subjective_wildbench_single.py
Normal file
135
configs/eval_subjective_wildbench_single.py
Normal file
@ -0,0 +1,135 @@
|
||||
from mmengine.config import read_base
|
||||
|
||||
with read_base():
|
||||
# from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import subjective_datasets
|
||||
from .datasets.subjective.wildbench.wildbench_single_judge import subjective_datasets
|
||||
# from .models.gemma.hf_gemma_2b_it import models as gemma_2b_models
|
||||
# from .models.hf_llama.hf_llama3_70b_instruct import models as llama3_model
|
||||
# # from .models.hf_internlm.hf_internlm2_chat_7b import models
|
||||
# from .models.yi.hf_yi_1_5_34b_chat import models as yi_model
|
||||
# from .models.qwen.hf_qwen1_5_72b_chat import models as qwen_model
|
||||
|
||||
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
|
||||
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
||||
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
||||
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
|
||||
from opencompass.runners import LocalRunner
|
||||
from opencompass.runners import SlurmSequentialRunner
|
||||
from opencompass.tasks import OpenICLInferTask
|
||||
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
||||
from opencompass.summarizers import WildBenchSingleSummarizer
|
||||
from opencompass.models import HuggingFacewithChatTemplate
|
||||
|
||||
|
||||
# models = sum([v for k, v in locals().items() if k.endswith("_model")], [])
|
||||
|
||||
api_meta_template = dict(
|
||||
round=[
|
||||
dict(role='SYSTEM', api_role='SYSTEM'),
|
||||
dict(role='HUMAN', api_role='HUMAN'),
|
||||
dict(role='BOT', api_role='BOT', generate=True),
|
||||
]
|
||||
)
|
||||
|
||||
# _meta_template = dict(
|
||||
# round=[
|
||||
# dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'),
|
||||
# dict(role='BOT', begin='\n<|im_start|>assistant\n', end='<|im_end|>', generate=True),
|
||||
# ],
|
||||
# )
|
||||
# -------------Inference Stage ----------------------------------------
|
||||
# For subjective evaluation, we often set do sample for models
|
||||
# set max_out_len to 4096.
|
||||
models = [
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='llama-3-8b-instruct-hf',
|
||||
path='meta-llama/Meta-Llama-3-8B-Instruct',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
stop_words=['<|end_of_text|>', '<|eot_id|>'],
|
||||
),
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='yi-1.5-6b-chat-hf',
|
||||
path='01-ai/Yi-1.5-6B-Chat',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
),
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='qwen1.5-7b-chat-hf',
|
||||
path='Qwen/Qwen1.5-7B-Chat',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='llama-3-70b-instruct-hf',
|
||||
# path='meta-llama/Meta-Llama-3-70B-Instruct',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=4),
|
||||
# stop_words=['<|end_of_text|>', '<|eot_id|>'],
|
||||
# ),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='yi-1.5-34b-chat-hf',
|
||||
# path='01-ai/Yi-1.5-34B-Chat',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=2),
|
||||
# ),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='qwen1.5-72b-chat-hf',
|
||||
# path='Qwen/Qwen1.5-72B-Chat',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=4),
|
||||
# )
|
||||
]
|
||||
|
||||
datasets = [*subjective_datasets]
|
||||
|
||||
# -------------Evalation Stage ----------------------------------------
|
||||
|
||||
## ------------- JudgeLLM Configuration
|
||||
judge_models = [dict(
|
||||
abbr='GPT4-Turbo',
|
||||
type=OpenAI,
|
||||
path='gpt-4-0613', # To compare with the official leaderboard, please use gpt4-0613
|
||||
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
|
||||
meta_template=api_meta_template,
|
||||
query_per_second=16,
|
||||
max_out_len=2048,
|
||||
max_seq_len=2048,
|
||||
batch_size=8,
|
||||
temperature=0,
|
||||
)]
|
||||
|
||||
|
||||
infer = dict(
|
||||
partitioner=dict(type=SizePartitioner, max_task_size=1000, strategy='split'),
|
||||
runner=dict(
|
||||
type=SlurmSequentialRunner,
|
||||
max_num_workers=64,
|
||||
quotatype='reserved',
|
||||
partition='llmeval',
|
||||
task=dict(type=OpenICLInferTask)),
|
||||
)
|
||||
|
||||
## single evaluation
|
||||
eval = dict(
|
||||
partitioner=dict(type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000, mode='singlescore', models=models, judge_models=judge_models),
|
||||
runner=dict(type=LocalRunner,
|
||||
max_num_workers=2,
|
||||
task=dict(type=SubjectiveEvalTask)),
|
||||
)
|
||||
|
||||
summarizer = dict(type=WildBenchSingleSummarizer)
|
||||
|
||||
work_dir = 'outputs/wildbench/'
|
@ -10,3 +10,4 @@ from .mtbench import MTBenchDataset # noqa: F401, F403
|
||||
from .mtbench101 import MTBench101Dataset # noqa: F401, F403
|
||||
from .multiround import MultiroundDataset # noqa: F401, F403
|
||||
from .subjective_cmp import SubjectiveCmpDataset # noqa: F401, F403
|
||||
from .wildbench import WildBenchDataset # noqa: F401, F403
|
||||
|
249
opencompass/datasets/subjective/wildbench.py
Normal file
249
opencompass/datasets/subjective/wildbench.py
Normal file
@ -0,0 +1,249 @@
|
||||
import json
|
||||
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from opencompass.registry import LOAD_DATASET
|
||||
|
||||
from ..base import BaseDataset
|
||||
|
||||
score_prompt = """# Instruction
|
||||
|
||||
You are an expert evaluator. Your task is to evaluate the quality of \
|
||||
the responses generated by AI models.
|
||||
We will provide you with the user query and an AI-generated responses.
|
||||
You should first read the user query and the conversation history \
|
||||
carefully for analyzing the task, and then evaluate the quality of \
|
||||
the responses based on and rules provided below.
|
||||
|
||||
# Conversation between User and AI
|
||||
|
||||
## History
|
||||
<|begin_of_history|>
|
||||
|
||||
{history}
|
||||
|
||||
<|end_of_history|>
|
||||
|
||||
## Current User Query
|
||||
<|begin_of_query|>
|
||||
|
||||
{user_query}
|
||||
|
||||
<|end_of_query|>
|
||||
|
||||
## AI Response
|
||||
<|begin_of_response|>
|
||||
|
||||
{prediction}
|
||||
|
||||
<|end_of_response|>
|
||||
|
||||
|
||||
# Evaluation
|
||||
|
||||
## Checklist
|
||||
|
||||
<|begin_of_checklist|>
|
||||
|
||||
{checklist}
|
||||
|
||||
<|end_of_checklist|>
|
||||
|
||||
Please use this checklist to guide your evaluation, but do \
|
||||
not limit your assessment to the checklist.
|
||||
|
||||
## Rules
|
||||
|
||||
You should compare the above response based on your analysis\
|
||||
of the user queries and the conversation history.
|
||||
You should first write down your analysis and the checklist \
|
||||
that you used for the evaluation, and then provide your \
|
||||
assessment according to the checklist.
|
||||
The scores are in the range of 1~10, where 1 means the \
|
||||
response is very poor and 10 means the response is perfect.
|
||||
Here are more detailed criteria for the scores:
|
||||
|
||||
- Score 1~2: The response is very poor and does not make sense at all.
|
||||
- Score 3~4: The response is poor and does help user solve the problem\
|
||||
in a meaningful way.
|
||||
- Score 5~6: The response is fair but has some issues (e.g., factual \
|
||||
errors, hallucinations, missing key information).
|
||||
- Score 7~8: The response is good enough but could be improved in some ways.
|
||||
- Score 9~10: The response is perfect and provides helpful information that\
|
||||
can help user solve the problem.
|
||||
|
||||
## Output Format
|
||||
First, please output your analysis for the model response, and then summarize\
|
||||
your assessment to two aspects: "strengths" and "weaknesses"; Finally, please\
|
||||
write down your rating for the assessment.
|
||||
|
||||
Please provide your evaluation results in the following json format by filling\
|
||||
in the placeholders in []:
|
||||
```
|
||||
{
|
||||
"strengths": "[analysis for the strengths of the response]",
|
||||
"weaknesses": "[analysis for the weaknesses of the response]",
|
||||
"score": "[1~10]"
|
||||
}
|
||||
```"""
|
||||
|
||||
pair_prompt = """# Instruction
|
||||
|
||||
You are an expert evaluator. Your task is to evaluate the quality of the \
|
||||
responses generated by two AI models.
|
||||
We will provide you with the user query and a pair of AI-generated \
|
||||
responses (Response A and Response B).
|
||||
You should first read the user query and the conversation history \
|
||||
carefully for analyzing the task, and then evaluate the quality of the \
|
||||
responses based on and rules provided below.
|
||||
|
||||
# Conversation between User and AI
|
||||
|
||||
## History
|
||||
<|begin_of_history|>
|
||||
|
||||
{history}
|
||||
|
||||
<|end_of_history|>
|
||||
|
||||
## Current User Query
|
||||
<|begin_of_query|>
|
||||
|
||||
{user_query}
|
||||
|
||||
<|end_of_query|>
|
||||
|
||||
## Response A
|
||||
<|begin_of_response_A|>
|
||||
|
||||
{prediction}
|
||||
|
||||
<|end_of_response_A|>
|
||||
|
||||
## Response B
|
||||
<|begin_of_response_B|>
|
||||
|
||||
{prediction2}
|
||||
|
||||
<|end_of_response_B|>
|
||||
|
||||
# Evaluation
|
||||
|
||||
## Checklist
|
||||
|
||||
<|begin_of_checklist|>
|
||||
|
||||
{checklist}
|
||||
|
||||
<|end_of_checklist|>
|
||||
|
||||
Please use this checklist to guide your evaluation, but do not limit your \
|
||||
assessment to the checklist.
|
||||
|
||||
## Rules
|
||||
|
||||
You should compare the above two responses based on your analysis of the \
|
||||
user queries and the conversation history.
|
||||
You should first write down your analysis and the checklist that you used \
|
||||
for the evaluation, and then provide your assessment according to the \
|
||||
checklist.
|
||||
There are five choices to give your final assessment: ["A++", "A+", \
|
||||
"A=B", "B+", "B++"], which correspond to the following meanings:
|
||||
|
||||
- `A++`: Response A is much better than Response B.
|
||||
- `A+`: Response A is only slightly better than Response B.
|
||||
- `A=B`: Response A and B are of the same quality. Please use this \
|
||||
choice sparingly.
|
||||
- `B+`: Response B is only slightly better than Response A.
|
||||
- `B++`: Response B is much better than Response A.
|
||||
|
||||
|
||||
## Output Format
|
||||
First, please output your analysis for each model response, and \
|
||||
then summarize your assessment to three aspects: "reason A=B", \
|
||||
"reason A>B", and "reason B>A", and finally make your choice for \
|
||||
the final assessment.
|
||||
|
||||
Please provide your evaluation results in the following json \
|
||||
format by filling in the placeholders in []:
|
||||
```
|
||||
{
|
||||
"analysis of A": "[analysis of Response A]",
|
||||
"analysis of B": "[analysis of Response B]",
|
||||
"reason of A=B": "[where Response A and B perform equally well]",
|
||||
"reason of A>B": "[where Response A is better than Response B]",
|
||||
"reason of B>A": "[where Response B is better than Response A]",
|
||||
"choice": "[A++ or A+ or A=B or B+ or B++]",
|
||||
}
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
def parse_conversation(conversation):
|
||||
# parse conversation into chat dialogue
|
||||
role_dict = {'user': 'HUMAN', 'assistant': 'assistant'}
|
||||
chat_round = []
|
||||
history = ''
|
||||
if len(conversation) > 0:
|
||||
for x in conversation[:-1]:
|
||||
if x['role'] == 'user':
|
||||
history += 'USER: ' + x['content'] + '\n\n'
|
||||
elif x['role'] == 'assistant':
|
||||
history += 'ASSISTANT: ' + x['content'] + '\n\n'
|
||||
|
||||
chat_round.append({
|
||||
'role': role_dict[x['role']],
|
||||
'content': x['content']
|
||||
})
|
||||
|
||||
last_query = conversation[-1]['content']
|
||||
chat_round.append({
|
||||
'role': role_dict[conversation[-1]['role']],
|
||||
'content': conversation[-1]['content']
|
||||
})
|
||||
chat_round.append({'role': 'assistant', 'content': ''})
|
||||
|
||||
return chat_round, last_query, history
|
||||
|
||||
|
||||
@LOAD_DATASET.register_module()
|
||||
class WildBenchDataset(BaseDataset):
|
||||
|
||||
def load(self, path: str, K=-1, mode='pair'):
|
||||
dataset = DatasetDict()
|
||||
raw_data = []
|
||||
with open(path, 'r', encoding='utf-8') as file:
|
||||
for line in file:
|
||||
item = json.loads(line)
|
||||
chat_round, last_query, history = parse_conversation(
|
||||
item['turn'])
|
||||
|
||||
checklist_mardkdown = ''
|
||||
for checklist_item in item['checklist']:
|
||||
checklist_mardkdown += f'- {checklist_item}\n'
|
||||
|
||||
if mode == 'single':
|
||||
prompt = score_prompt
|
||||
elif mode == 'pair':
|
||||
prompt = pair_prompt
|
||||
else:
|
||||
assert NotImplementedError(
|
||||
f'Mode {mode} not in single or pair.')
|
||||
|
||||
prompt = prompt.replace('{history}', history)
|
||||
prompt = prompt.replace('{user_query}', last_query)
|
||||
prompt = prompt.replace('{checklist}', checklist_mardkdown)
|
||||
|
||||
raw_data.append({
|
||||
'dialogue': chat_round,
|
||||
'history': history,
|
||||
'prompt': prompt,
|
||||
'judge': {
|
||||
'other': None,
|
||||
'primary_tag': item['primary_tag'],
|
||||
'secondary_tag': item['secondary_tag'],
|
||||
'question_id': item['session_id'],
|
||||
}
|
||||
})
|
||||
dataset = Dataset.from_list(raw_data)
|
||||
return dataset
|
@ -13,3 +13,4 @@ from .information_retrival import IRSummarizer
|
||||
from .mtbench import MTBenchSummarizer
|
||||
from .mtbench101 import MTBench101Summarizer
|
||||
from .multiround import MultiroundSummarizer
|
||||
from .wildbench import WildBenchPairSummarizer, WildBenchSingleSummarizer
|
||||
|
295
opencompass/summarizers/subjective/wildbench.py
Normal file
295
opencompass/summarizers/subjective/wildbench.py
Normal file
@ -0,0 +1,295 @@
|
||||
# flake8: noqa
|
||||
# yapf: disable
|
||||
import csv
|
||||
import os
|
||||
import os.path as osp
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from datetime import datetime
|
||||
from itertools import product
|
||||
|
||||
import numpy as np
|
||||
from mmengine import ConfigDict
|
||||
from tabulate import tabulate
|
||||
|
||||
from opencompass.partitioners.sub_naive import remove_duplicate_pairs
|
||||
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg
|
||||
|
||||
from .compass_arena import (CompassArenaSummarizer, check_position_bias,
|
||||
model_abbr_from_cfg_used_in_summarizer)
|
||||
from .utils import get_judgeanswer_and_reference, get_outdir
|
||||
|
||||
task_group_new = {
|
||||
'Information seeking': 'Information/Advice seeking',
|
||||
'Creative Writing': 'Creative Tasks',
|
||||
'Coding & Debugging': 'Coding & Debugging',
|
||||
'Reasoning': 'Planning & Reasoning',
|
||||
'Editing': 'Creative Tasks',
|
||||
'Math': 'Math & Data Analysis',
|
||||
'Planning': 'Planning & Reasoning',
|
||||
'Brainstorming': 'Creative Tasks',
|
||||
'Role playing': 'Creative Tasks',
|
||||
'Advice seeking': 'Information/Advice seeking',
|
||||
'Data Analysis': 'Math & Data Analysis',
|
||||
'Others': 'Creative Tasks'}
|
||||
|
||||
|
||||
def post_process_wildbench_pair(judgement: str):
|
||||
pattern = r'\"choice\": \"(.*?)\"'
|
||||
matched_result = re.findall(pattern, judgement)
|
||||
if matched_result:
|
||||
return matched_result[0]
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def post_process_wildbench_single(judgement: str):
|
||||
pattern = r'\"score\": \"(.*?)\"'
|
||||
matched_result = re.findall(pattern, judgement)
|
||||
try:
|
||||
score = float(matched_result[0])
|
||||
return {'score': score}
|
||||
except (ValueError, IndexError) as e:
|
||||
return None
|
||||
|
||||
# if matched_result:
|
||||
# score = float(matched_result[0])
|
||||
# else:
|
||||
# return None
|
||||
# return {'score': score}
|
||||
|
||||
|
||||
def get_capability_results(
|
||||
judged_answers,
|
||||
references,
|
||||
fout,
|
||||
fout_flag,
|
||||
model_abbr,
|
||||
):
|
||||
capability_ratings = defaultdict(float)
|
||||
capability_counts = defaultdict(float)
|
||||
|
||||
for ans, ref in zip(judged_answers, references):
|
||||
# rescale
|
||||
capability_ratings['total'] += ans
|
||||
capability_counts['total'] += 1
|
||||
tags = [ref['primary_tag']] + ref['secondary_tag']
|
||||
for tag in tags:
|
||||
capability_ratings[task_group_new[tag]] += ans
|
||||
capability_counts[task_group_new[tag]] += 1
|
||||
|
||||
capability_avg_ratings = defaultdict(float)
|
||||
|
||||
for capability, total_score in capability_ratings.items():
|
||||
s = (total_score / capability_counts[capability] - 5) * 2 * 10
|
||||
s = round(s, 2)
|
||||
capability_avg_ratings[capability] = s
|
||||
columns = list(capability_avg_ratings.keys())
|
||||
columns.insert(0, columns.pop(columns.index('total')))
|
||||
|
||||
with open(fout, 'a+', newline='') as csvfile:
|
||||
writer = csv.writer(csvfile)
|
||||
if fout_flag == 0:
|
||||
writer.writerow(['model'] + columns)
|
||||
writer.writerow([model_abbr] + [capability_avg_ratings[column] for column in columns])
|
||||
|
||||
|
||||
class WildBenchSingleSummarizer(CompassArenaSummarizer):
|
||||
"""Do the subjectivity analyze based on evaluation results.
|
||||
|
||||
Args:
|
||||
config (ConfigDict): The configuration object of the evaluation task.
|
||||
It's expected to be filled out at runtime.
|
||||
"""
|
||||
|
||||
def __init__(self, config: ConfigDict) -> None:
|
||||
self.judge_type = 'single'
|
||||
self.tasks = []
|
||||
self.cfg = config
|
||||
|
||||
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models']
|
||||
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0])
|
||||
self.judge_function = post_process_wildbench_single
|
||||
|
||||
def summarize(self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
|
||||
"""Summarize the subjectivity analysis based on evaluation results.
|
||||
|
||||
Args:
|
||||
time_str (str): Timestamp for file naming.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: The summary results.
|
||||
"""
|
||||
|
||||
# self.judge_type == 'single'
|
||||
dataset_cfgs = self.cfg['datasets']
|
||||
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
||||
fout_flag = 0
|
||||
for eval_model_cfg in self.eval_model_cfgs:
|
||||
eval_model_abbr = model_abbr_from_cfg(eval_model_cfg)
|
||||
show_model_abbr = model_abbr_from_cfg_used_in_summarizer(eval_model_cfg)
|
||||
subdir_path = os.path.join(results_folder, eval_model_abbr + '_judged-by--' + self.judge_abbr)
|
||||
if os.path.isdir(subdir_path):
|
||||
fout = osp.join(output_dir, 'judged-by--' + self.judge_abbr + '-capability.csv')
|
||||
overall_judged_answers, overall_references = [], []
|
||||
for dataset in dataset_cfgs:
|
||||
judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function)
|
||||
judged_answers = [item['score'] for item in judged_answers]
|
||||
overall_judged_answers += judged_answers
|
||||
overall_references += references
|
||||
|
||||
get_capability_results(overall_judged_answers, overall_references, fout, fout_flag, show_model_abbr)
|
||||
fout_flag += 1
|
||||
else:
|
||||
print(subdir_path + ' is not exist! please check!')
|
||||
|
||||
|
||||
class WildBenchPairSummarizer(CompassArenaSummarizer):
|
||||
"""Do the subjectivity analyze based on evaluation results.
|
||||
|
||||
Args:
|
||||
config (ConfigDict): The configuration object of the evaluation task.
|
||||
It's expected to be filled out at runtime.
|
||||
"""
|
||||
|
||||
def __init__(self, config: ConfigDict, check_pos_bias=False) -> None:
|
||||
self.tasks = []
|
||||
self.cfg = config
|
||||
|
||||
self.base_models = self.cfg['eval']['partitioner']['base_models']
|
||||
self.compare_models = self.cfg['eval']['partitioner']['compare_models']
|
||||
self.judge_models = self.cfg.get('judge_models', None)
|
||||
self.meta_judge_model = self.cfg.eval.partitioner.get('meta_judge_model', None)
|
||||
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0])
|
||||
self.judge_function = post_process_wildbench_pair
|
||||
self.check_pos_bias = check_pos_bias
|
||||
|
||||
def get_score(self, time_str):
|
||||
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
||||
model_combinations = list(product(self.base_models, self.compare_models))
|
||||
unique_combinations = remove_duplicate_pairs([combo for combo in model_combinations if combo[0] != combo[1]])
|
||||
|
||||
if self.meta_judge_model is not None:
|
||||
self.judge_models.append(self.meta_judge_model)
|
||||
|
||||
scores = {}
|
||||
for idx, judge_model_cfg in enumerate(self.judge_models):
|
||||
judge_model = model_abbr_from_cfg(judge_model_cfg)
|
||||
for dataset in self.cfg['datasets']:
|
||||
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
||||
for model_pair in unique_combinations:
|
||||
base_model = model_pair[0]['abbr']
|
||||
compare_model = model_pair[1]['abbr']
|
||||
if idx == len(self.judge_models):
|
||||
subdir = base_model + '_' + compare_model + '_summarized-by--' + judge_model
|
||||
else:
|
||||
subdir = base_model + '_' + compare_model + '_judged-by--' + judge_model
|
||||
subdir_path = os.path.join(results_folder, subdir)
|
||||
if not os.path.isdir(subdir_path):
|
||||
print(subdir_path + ' is not exist! please check!')
|
||||
continue
|
||||
judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function)
|
||||
if self.check_pos_bias:
|
||||
bias_num = check_position_bias(judged_answers, references)
|
||||
else:
|
||||
bias_num = 0
|
||||
win_base_model = defaultdict(float)
|
||||
win_compare_model = defaultdict(float)
|
||||
categories = defaultdict(float)
|
||||
# base_model = references[0]['answer1']
|
||||
# compare_model = references[0]['answer2']
|
||||
score_mapping = {'A++': 1, 'A+': 0.5, 'A=B': 0, 'B+': -0.5, 'B++': -1}
|
||||
for prediction, reference in zip(judged_answers, references):
|
||||
if prediction not in score_mapping:
|
||||
continue
|
||||
|
||||
categories[dataset_abbr] += 1
|
||||
flag = 1 if reference['answer1'] == base_model else -1
|
||||
score_1 = score_mapping[prediction]*flag
|
||||
score_2 = -score_1
|
||||
|
||||
tags = [reference['primary_tag']] + reference['secondary_tag']
|
||||
for tag in tags:
|
||||
win_base_model[task_group_new[tag]] += score_1
|
||||
win_compare_model[task_group_new[tag]] += score_2
|
||||
categories[task_group_new[tag]] += 1
|
||||
|
||||
win_compare_model[dataset_abbr] += score_2
|
||||
win_base_model[dataset_abbr] += score_1
|
||||
|
||||
for capability in categories:
|
||||
win_base_model[capability] = win_base_model[capability] / categories[capability] * 100
|
||||
win_base_model[capability] = round(win_base_model[capability], 2)
|
||||
win_compare_model[capability] = win_compare_model[capability] / categories[capability] * 100
|
||||
win_compare_model[capability] = round(win_compare_model[capability], 2)
|
||||
|
||||
win_base_model['position_bias'] = bias_num
|
||||
win_compare_model['position_bias'] = bias_num
|
||||
|
||||
if judge_model not in scores:
|
||||
scores[judge_model] = {}
|
||||
if dataset_abbr not in scores[judge_model]:
|
||||
scores[judge_model][dataset_abbr] = {}
|
||||
scores[judge_model][dataset_abbr][base_model + '/' + compare_model] = win_compare_model
|
||||
|
||||
return scores
|
||||
|
||||
def summarize(
|
||||
self,
|
||||
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
|
||||
):
|
||||
"""Summarize the subjectivity analysis based on evaluation results.
|
||||
|
||||
Args:
|
||||
time_str (str): Timestamp for file naming.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: The summary results.
|
||||
"""
|
||||
scores = self.get_score(time_str)
|
||||
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
||||
for idx, judge_model in enumerate(self.judge_models):
|
||||
judge_abbr = model_abbr_from_cfg(judge_model)
|
||||
for dataset in self.cfg['datasets']:
|
||||
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
||||
summarizer_model_abbrs = [model_abbr_from_cfg_used_in_summarizer(i) for i in self.compare_models]
|
||||
one_column = list(scores[judge_abbr][dataset_abbr].values())[0]
|
||||
row_headers = [i for i in one_column.keys() if i not in [dataset_abbr, 'position_bias']]
|
||||
row_headers = [dataset_abbr, 'position_bias'] + row_headers
|
||||
|
||||
table = []
|
||||
for row_header in row_headers:
|
||||
row = [row_header]
|
||||
headers = ['']
|
||||
for model_cfg in self.compare_models:
|
||||
model_abbr = model_abbr_from_cfg(model_cfg)
|
||||
avg = 0
|
||||
for base_model_cfg in self.base_models:
|
||||
base_model_abbr = model_abbr_from_cfg(base_model_cfg)
|
||||
base_compare = base_model_abbr + '/' + model_abbr
|
||||
headers.append(base_compare)
|
||||
s = scores[judge_abbr][dataset_abbr][base_compare].get(row_header, '')
|
||||
if isinstance(s, float):
|
||||
avg += s
|
||||
s = f'{s:.2f}'
|
||||
if isinstance(s, int):
|
||||
s = str(s)
|
||||
row.append(s)
|
||||
avg = avg/len(self.base_models)
|
||||
row.append(f'{avg:.2f}')
|
||||
headers.append('Avg')
|
||||
table.append(row)
|
||||
|
||||
txt = tabulate(table, headers=headers)
|
||||
print(txt)
|
||||
|
||||
if idx == len(self.judge_models):
|
||||
output_filename = osp.join(output_dir, 'summarized-by--' + judge_abbr + '-' + dataset_abbr + '-report.csv')
|
||||
else:
|
||||
output_filename = osp.join(output_dir, 'judged-by--' + judge_abbr + '-' + dataset_abbr + '-report.csv')
|
||||
|
||||
with open(output_filename, 'w') as f:
|
||||
f.write(','.join(headers) + '\n')
|
||||
for line in table:
|
||||
f.write(','.join(line) + '\n')
|
||||
print(output_filename)
|
@ -2,7 +2,6 @@ from __future__ import annotations
|
||||
|
||||
import hashlib
|
||||
import json
|
||||
import re
|
||||
from copy import deepcopy
|
||||
from typing import Dict, List, Union
|
||||
|
||||
@ -20,15 +19,20 @@ def safe_format(input_str: str, **kwargs) -> str:
|
||||
Returns:
|
||||
str: The formatted string.
|
||||
"""
|
||||
segs = [input_str]
|
||||
# import re
|
||||
# segs = [input_str]
|
||||
# for k, v in kwargs.items():
|
||||
# regex = re.compile(f'(?<={{{k}}})(?={{{k}}})|({{{k}}})')
|
||||
# segs = [regex.split(seg) for seg in segs]
|
||||
# segs = sum(segs, [])
|
||||
# replace_dict = {f'{{{k}}}': str(v) for k, v in kwargs.items()}
|
||||
# segs = [replace_dict.get(seg, seg) for seg in segs]
|
||||
# output_str = ''.join(segs)
|
||||
# return output_str
|
||||
|
||||
for k, v in kwargs.items():
|
||||
regex = re.compile(f'(?<={{{k}}})(?={{{k}}})|({{{k}}})')
|
||||
segs = [regex.split(seg) for seg in segs]
|
||||
segs = sum(segs, [])
|
||||
replace_dict = {f'{{{k}}}': str(v) for k, v in kwargs.items()}
|
||||
segs = [replace_dict.get(seg, seg) for seg in segs]
|
||||
output_str = ''.join(segs)
|
||||
return output_str
|
||||
input_str = input_str.replace(f'{{{k}}}', str(v))
|
||||
return input_str
|
||||
|
||||
|
||||
def get_prompt_hash(dataset_cfg: Union[ConfigDict, List[ConfigDict]]) -> str:
|
||||
|
Loading…
Reference in New Issue
Block a user