This commit is contained in:
yufeng zhao 2025-03-10 04:24:52 +00:00
parent c84bc18ac1
commit 1f0c5cbb5f
10 changed files with 637 additions and 0 deletions

View File

@ -234,6 +234,11 @@
category: Reasoning
paper: https://arxiv.org/pdf/2210.09261
configpath: opencompass/configs/datasets/bbh
- bbeh:
name: BIG-Bench Extra Hard
category: Reasoning
paper:https://arxiv.org/abs/2502.19187
configpath: opencompass/configs/datasets/bbeh
- BoolQ:
name: SuperGLUE / BoolQ
category: Knowledge

23
hf_settings.py Normal file
View File

@ -0,0 +1,23 @@
import os
import huggingface_hub.constants as hf_constants
from huggingface_hub import set_cache_dir
from datasets import get_dataset_config_names # Optional, if you need dataset-related functionality
# Set a new cache directory
new_cache_dir = "/fs-computility/llm/shared/llmeval/models/opencompass_hf_hub" # Replace with your desired path
set_cache_dir(new_cache_dir)
# Alternatively, you can set the environment variable
# os.environ["HF_HOME"] = new_cache_dir
# Root cache path for Hugging Face
root_cache_dir = hf_constants.HF_HOME
print(f"Root HF cache path: {root_cache_dir}")
# Dataset cache path (typically under HF_HOME/datasets)
dataset_cache_dir = f"{root_cache_dir}/datasets"
print(f"Dataset cache path: {dataset_cache_dir}")
# Model cache path (typically under HF_HOME/hub)
model_cache_dir = f"{root_cache_dir}/hub"
print(f"Model cache path: {model_cache_dir}")

View File

@ -0,0 +1,93 @@
import os
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BBEHDataset, BBEHEvaluator, bbeh_mcq_postprocess, BBEHEvaluator_mcq
bbeh_reader_cfg = dict(input_columns=['input'], output_column='target')
bbeh_multiple_choice_sets = [
'bbeh_boolean_expressions',
'bbeh_disambiguation_qa',
'bbeh_geometric_shapes',
'bbeh_hyperbaton',
'bbeh_movie_recommendation',
'bbeh_nycc',
'bbeh_shuffled_objects',
]
bbeh_free_form_sets = [
'bbeh_boardgame_qa',
'bbeh_buggy_tables',
'bbeh_causal_understanding',
'bbeh_dyck_languages',
'bbeh_linguini',
'bbeh_multistep_arithmetic',
'bbeh_object_counting',
'bbeh_object_properties',
'bbeh_sarc_triples',
'bbeh_spatial_reasoning',
'bbeh_sportqa',
'bbeh_temporal_sequence',
'bbeh_time_arithmetic',
'bbeh_web_of_lies',
'bbeh_word_sorting',
'bbeh_zebra_puzzles',
]
bbeh_datasets = []
for _name in bbeh_multiple_choice_sets:
bbeh_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f"Think step by step, and when you provide the final answer, please use the prefix \"The answer is:\"without any modification, and provide the answer directly, with no formatting, no bolding, and no markup. For instance: \"The answer is: 42\" or \"The answer is: yes\". If the question is multiple choice with a single correct answer, the final answer must only be the letter corresponding to the correct answer. For example, \"The answer is: (a)\"\n\nQ: {{input}}\nA: "
)
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=8192))
bbeh_eval_cfg = dict(
evaluator=dict(type=BBEHEvaluator_mcq),
pred_role='BOT',
pred_postprocessor=dict(type=bbeh_mcq_postprocess),
dataset_postprocessor=dict(type=bbeh_mcq_postprocess))
bbeh_datasets.append(
dict(
type=BBEHDataset,
path='opencompass/bbeh',
name=_name,
abbr=_name,
reader_cfg=bbeh_reader_cfg,
infer_cfg=bbeh_infer_cfg.copy(),
eval_cfg=bbeh_eval_cfg.copy()))
for _name in bbeh_free_form_sets:
bbeh_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f"Think step by step, and when you provide the final answer, please use the prefix \"The answer is:\"without any modification, and provide the answer directly, with no formatting, no bolding, and no markup. For instance: \"The answer is: 42\" or \"The answer is: yes\". If the question is multiple choice with a single correct answer, the final answer must only be the letter corresponding to the correct answer. For example, \"The answer is: (a)\"\n\nQ: {{input}}\nA: "
)
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=8192))
bbeh_eval_cfg = dict(evaluator=dict(type=BBEHEvaluator), pred_role='BOT', pred_postprocessor=dict(type=bbeh_mcq_postprocess), dataset_postprocessor=dict(type=bbeh_mcq_postprocess))
bbeh_datasets.append(
dict(
type=BBEHDataset,
path='opencompass/bbeh',
name=_name,
abbr=_name,
reader_cfg=bbeh_reader_cfg,
infer_cfg=bbeh_infer_cfg.copy(),
eval_cfg=bbeh_eval_cfg.copy()))

View File

@ -0,0 +1,25 @@
settings = [
('bbeh_boolean_expressions', 'mcq'),
('bbeh_disambiguation_qa', 'mcq'),
('bbeh_geometric_shapes', 'mcq'),
('bbeh_hyperbaton', 'mcq'),
('bbeh_movie_recommendation', 'mcq'),
('bbeh_nycc', 'mcq'),
('bbeh_shuffled_objects', 'mcq'),
('bbeh_boardgame_qa', 'free_form'),
('bbeh_buggy_tables', 'free_form'),
('bbeh_causal_understanding', 'free_form'),
('bbeh_dyck_languages', 'free_form'),
('bbeh_linguini', 'free_form'),
('bbeh_multistep_arithmetic', 'free_form'),
('bbeh_object_counting', 'free_form'),
('bbeh_object_properties', 'free_form'),
('bbeh_sarc_triples', 'free_form'),
('bbeh_spatial_reasoning', 'free_form'),
('bbeh_sportqa', 'free_form'),
('bbeh_temporal_sequence', 'free_form'),
('bbeh_time_arithmetic', 'free_form'),
('bbeh_web_of_lies', 'free_form'),
('bbeh_word_sorting', 'free_form'),
('bbeh_zebra_puzzles', 'free_form'),
]

View File

@ -0,0 +1,12 @@
bbeh_summary_groups = []
# bbeh
_bbeh = [
'bbeh_boolean_expressions', 'bbeh_disambiguation_qa', 'bbeh_geometric_shapes', 'bbeh_hyperbaton',
'bbeh_movie_recommendation', 'bbeh_nycc', 'bbeh_shuffled_objects', 'bbeh_boardgame_qa',
'bbeh_buggy_tables', 'bbeh_causal_understanding', 'bbeh_dyck_languages', 'bbeh_linguini',
'bbeh_multistep_arithmetic', 'bbeh_object_counting', 'bbeh_object_properties', 'bbeh_sarc_triples',
'bbeh_spatial_reasoning', 'bbeh_sportqa', 'bbeh_temporal_sequence', 'bbeh_time_arithmetic',
'bbeh_web_of_lies', 'bbeh_word_sorting', 'bbeh_zebra_puzzles'
]
bbeh_summary_groups.append({'name': 'bbeh', 'subsets': _bbeh})

View File

@ -10,6 +10,7 @@ from .arc_prize_public_evaluation import * # noqa: F401, F403
from .ax import * # noqa: F401, F403
from .babilong import * # noqa: F401, F403
from .bbh import * # noqa: F401, F403
from .bbeh import * # noqa: F401, F403
from .bigcodebench import * # noqa: F401, F403
from .boolq import * # noqa: F401, F403
from .bustum import * # noqa: F401, F403

View File

@ -0,0 +1,152 @@
import json
import os.path as osp
import re
from os import environ
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import (ICL_EVALUATORS, LOAD_DATASET,
TEXT_POSTPROCESSORS)
from opencompass.utils import get_data_path
from .base import BaseDataset
@LOAD_DATASET.register_module()
class BBEHDataset(BaseDataset):
@staticmethod
def load(path: str, name: str):
path = get_data_path(path)
if environ.get('DATASET_SOURCE') == 'ModelScope':
from modelscope import MsDataset
dataset = MsDataset.load(path, subset_name=name, split='test')
else:
with open(osp.join(path, f'{name}/task.json'), 'r') as f:
data = json.load(f)['examples']
dataset = Dataset.from_list(data)
return dataset
@TEXT_POSTPROCESSORS.register_module('bbeh_freeform')
def bbeh_freeform_postprocess(text: str) -> str:
# Extract answer using specified prefixes
prefixes = [
'The answer is: ',
'The answer is ',
'The final answer is: ',
'The final answer is '
]
answer = text
for prefix in prefixes:
if prefix in text:
answer = text.split(prefix)[-1]
break
# Remove formatting markup
if '\\boxed' in answer:
answer = re.sub(r'\\boxed{(.*?)}', r'\1', answer) # latex box
if '\\text' in answer:
answer = re.sub(r'\\text(?:tt)?{(.*?)}', r'\1', answer) # text/texttt
if '**' in answer:
answer = re.sub(r'\*\*(.*?)\*\*', r'\1', answer) # bold
# Take first line and clean
if '\n' in answer:
answer = answer.split('\n')[0].strip()
return answer.strip().lower()
@TEXT_POSTPROCESSORS.register_module('bbeh_mcq')
def bbeh_mcq_postprocess(text: str) -> str:
# Extract answer using specified prefixes
prefixes = [
'The answer is: ',
'The answer is ',
'The final answer is: ',
'The final answer is '
]
answer = text
for prefix in prefixes:
if prefix in text:
answer = text.split(prefix)[-1]
break
# Remove parentheses if present
answer = answer.strip('()')
# Take first line and clean
if '\n' in answer:
answer = answer.split('\n')[0].strip()
return answer.strip().lower()
@ICL_EVALUATORS.register_module()
class BBEHEvaluator(BaseEvaluator):
def score(self, predictions, references):
if len(predictions) != len(references):
return {'error': 'predictions and references have different length'}
processed_preds = [bbeh_freeform_postprocess(p) for p in predictions]
processed_refs = [r.lower() for r in references] # References are already in correct format
details = []
correct_count = 0
for pred, ref in zip(processed_preds, processed_refs):
correct = False
# Rule 1: Exact match
if pred == ref:
correct = True
# Rule 2: Match after removing quotes/brackets
elif pred == ref.strip("'\"()[]"):
correct = True
# Rule 4: Comma - separated answers
elif ',' in ref:
norm_pred = re.sub(r'\s*,\s*', ',', pred)
norm_ref = re.sub(r'\s*,\s*', ',', ref)
if norm_pred == norm_ref:
correct = True
details.append({
'pred': pred,
'answer': ref,
'correct': correct
})
correct_count += int(correct)
score = (correct_count / len(predictions)) * 100
return {'score': score, 'details': details}
@ICL_EVALUATORS.register_module()
class BBEHEvaluator_mcq(BaseEvaluator):
def score(self, predictions, references):
if len(predictions) != len(references):
return {'error': 'predictions and references have different length'}
processed_preds = [bbeh_mcq_postprocess(p) for p in predictions]
processed_refs = [r.lower().strip('()') for r in references] # References are already in correct format
details = []
correct_count = 0
for pred, ref in zip(processed_preds, processed_refs):
correct = False
# Rule 1: Exact match
if pred == ref:
correct = True
details.append({
'pred': pred,
'answer': ref,
'correct': correct
})
correct_count += int(correct)
score = (correct_count / len(predictions)) * 100
return {'score': score, 'details': details}

View File

@ -137,6 +137,7 @@ class GenInferencer(BaseInferencer):
num_sample = 0
for datum in tqdm(dataloader, disable=not self.is_main_process):
if ds_reader.output_column:
print(list(zip(*datum)))
entry, golds = list(zip(*datum))
else:
entry = datum

View File

@ -33,6 +33,12 @@ DATASETS_MAPPING = {
"hf_id": "opencompass/bbh",
"local": "./data/BBH/data",
},
# bbeh
"opencompass/bbeh": {
"ms_id": "",
"hf_id": "",
"local": "./data/bbeh/",
},
# C-Eval
"opencompass/ceval-exam": {
"ms_id": "opencompass/ceval-exam",
@ -634,6 +640,10 @@ DATASETS_URL = {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/korbench.zip",
"md5": "9107597d137e7362eaf7d218ddef7a6d",
},
"/bbeh": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/bbeh.zip",
"md5": "43a3c2d73aee731ac68ac790bc9a358e",
},
"subjective/judgerbench": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/judgerbench.zip",
"md5": "60d605883aa8cac9755819140ab42c6b"

315
volc_tools.py Normal file
View File

@ -0,0 +1,315 @@
import os
import subprocess
import uuid
import yaml
import argparse
from typing import Dict, Optional
from dataclasses import dataclass, field, asdict
from loguru import logger
# Configure loguru logger
logger.remove() # Remove default handler
logger.add(
"volcano_deploy_{time}.log",
rotation="500 MB",
level="INFO",
format="<green>{time:YYYY-MM-DD HH:mm:ss}</green> | <level>{level: <8}</level> | <cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>"
)
logger.add(
lambda msg: print(msg, flush=True), # Also print to console
colorize=True,
format="<green>{time:HH:mm:ss}</green> | <level>{level: <8}</level> | <level>{message}</level>"
)
def get_current_conda_env() -> str:
"""Get the path of the current conda environment."""
try:
# Get CONDA_PREFIX from environment
conda_prefix = os.environ.get('CONDA_PREFIX')
if conda_prefix:
logger.debug(f"Found conda environment from CONDA_PREFIX: {conda_prefix}")
return conda_prefix
# If CONDA_PREFIX is not set, try to get it from conda command
logger.debug("CONDA_PREFIX not found, trying conda info command")
result = subprocess.run(
'conda info --envs | grep "*" | awk \'{print $NF}\'',
shell=True,
capture_output=True,
text=True
)
if result.returncode == 0 and result.stdout.strip():
env_path = result.stdout.strip()
logger.debug(f"Found conda environment from command: {env_path}")
return env_path
except Exception as e:
logger.warning(f"Failed to detect conda environment: {e}")
# Return default if detection fails
default_env = '/fs-computility/llm/shared/llmeval/share_envs/oc-v034-ld-v061'
logger.warning(f"Using default conda environment: {default_env}")
return default_env
@dataclass
class VolcanoConfig:
"""Configuration for Volcano deployment."""
home_path = '/fs-computility/llmeval/zhaoyufeng/'
bashrc_path=f'{home_path}.bashrc'
conda_env_name: str = field(default_factory=get_current_conda_env)
huggingface_cache: str = '/fs-computility/llm/shared/llmeval/models/opencompass_hf_hub'
torch_cache: str = '/fs-computility/llm/shared/llmeval/torch'
volc_cfg_file: str = '/fs-computility/llmeval/zhaoyufeng/ocplayground/envs/volc_infer.yaml'
task_name: str = 'compassjudger-1-32B'
queue_name: str = 'llmit'
extra_envs: list = field(default_factory=lambda: [
'COMPASS_DATA_CACHE=/fs-computility/llm/shared/llmeval/datasets/compass_data_cache',
'TORCH_HOME=/fs-computility/llm/shared/llmeval/torch',
'TIKTOKEN_CACHE_DIR=/fs-computility/llm/shared/llmeval/share_tiktoken',
])
image: str = "vemlp-cn-beijing.cr.volces.com/preset-images/cuda:12.2.2"
class VolcanoDeployment:
"""Handles deployment of ML tasks to Volcano infrastructure."""
def __init__(self, config: Optional[Dict] = None):
"""Initialize deployment with configuration."""
self.config = VolcanoConfig(**config) if config else VolcanoConfig()
self.pwd = os.getcwd()
logger.info("Initialized VolcanoDeployment with configuration:")
logger.info(f"Working directory: {self.pwd}")
for key, value in asdict(self.config).items():
logger.info(f"{key}: {value}")
def choose_flavor(self, num_gpus: int, num_replicas: int = 1) -> Dict:
"""Select appropriate machine flavor based on GPU requirements."""
flavor_map = {
0: 'ml.c1ie.2xlarge',
1: 'ml.pni2l.3xlarge',
2: 'ml.pni2l.7xlarge',
4: 'ml.pni2l.14xlarge',
8: 'ml.hpcpni2l.28xlarge'
}
if num_gpus > 8:
logger.error(f"Configuration for {num_gpus} GPUs not supported")
raise NotImplementedError(f"Configuration for {num_gpus} GPUs not supported")
for max_gpus, flavor in sorted(flavor_map.items()):
if num_gpus <= max_gpus:
selected_flavor = flavor
break
logger.info(f"Selected flavor {selected_flavor} for {num_gpus} GPUs")
logger.info(f"Number of relicas: {num_replicas}")
with open(self.config.volc_cfg_file) as fp:
volc_cfg = yaml.safe_load(fp)
for role_spec in volc_cfg['TaskRoleSpecs']:
if role_spec['RoleName'] == 'worker':
role_spec['Flavor'] = selected_flavor
role_spec['RoleReplicas'] = num_replicas
return volc_cfg
def build_shell_command(self, task_cmd: str) -> str:
"""Construct shell command with all necessary environment setup."""
logger.debug("Building shell command")
cmd_parts = [
f'source {self.config.bashrc_path}',
]
# Get CONDA_EXE from enviroment
conda_exe = os.environ.get("CONDA_EXE", None)
assert conda_exe, f"CONDA_EXE is None, please make sure conda exists in your current environment"
conda_activate = conda_exe.replace("bin/conda", "bin/activate")
# Handle conda environment activation based on whether it's a path or name
if os.path.exists(self.config.conda_env_name):
logger.debug(f"Using conda activate with path: {self.config.conda_env_name}")
cmd_parts.append(f'source {conda_activate} {self.config.conda_env_name}')
else:
logger.debug(f"Using source activate with name: {self.config.conda_env_name}")
cmd_parts.append(f'source {conda_activate} {self.config.conda_env_name}')
cmd_parts.extend([
f'export PYTHONPATH={self.pwd}:$PYTHONPATH',
f'export HF_HUB_CACHE={self.config.huggingface_cache}',
f'export HUGGINGFACE_HUB_CACHE={self.config.huggingface_cache}',
f'export TORCH_HOME={self.config.torch_cache}'
])
offline_vars = [
'HF_DATASETS_OFFLINE=1',
'TRANSFORMERS_OFFLINE=1',
'HF_EVALUATE_OFFLINE=1',
'HF_HUB_OFFLINE=1'
]
cmd_parts.extend([f'export {var}' for var in offline_vars])
if self.config.extra_envs:
cmd_parts.extend([f'export {env}' for env in self.config.extra_envs])
cmd_parts.extend([
f'cd {self.pwd}',
task_cmd
])
full_cmd = '; '.join(cmd_parts)
logger.debug(f"Generated shell command: {full_cmd}")
return full_cmd
def deploy(self, task_cmd: str, num_gpus: int = 4, num_replicas: int = 1) -> subprocess.CompletedProcess:
"""Deploy the task to Volcano infrastructure."""
logger.info(f"Starting deployment with {num_gpus} GPUs")
logger.info(f"Task command: {task_cmd}")
try:
volcano_cfg = self.choose_flavor(num_gpus, num_replicas)
os.makedirs(f'{self.pwd}/tmp', exist_ok=True)
tmp_cfg_file = f'{self.pwd}/tmp/{uuid.uuid4()}_cfg.yaml'
logger.debug(f"Created temporary config file: {tmp_cfg_file}")
with open(tmp_cfg_file, 'w') as fp:
yaml.dump(volcano_cfg, fp, sort_keys=False)
shell_cmd = self.build_shell_command(task_cmd)
submit_cmd = (
'volc ml_task submit'
f" --conf '{tmp_cfg_file}'"
f" --entrypoint '{shell_cmd}'"
f' --task_name {self.config.task_name}'
f' --resource_queue_name {self.config.queue_name}'
f' --image {self.config.image}'
)
logger.info("Submitting Volcano task")
logger.debug(f"Submit command: {submit_cmd}")
result = subprocess.run(
submit_cmd,
shell=True,
text=True,
capture_output=True,
check=True
)
logger.info("Task submitted successfully")
return result
except Exception as e:
logger.error(f"Deployment failed: {str(e)}")
raise
finally:
pass
# if os.path.exists(tmp_cfg_file):
# logger.debug(f"Cleaning up temporary config file: {tmp_cfg_file}")
# os.remove(tmp_cfg_file)
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(description='Deploy ML tasks to Volcano infrastructure')
# Required arguments
parser.add_argument('--task-cmd', required=True, help='The main task command to execute')
# Optional arguments
parser.add_argument('--num-gpus', type=int, default=4, help='Number of GPUs required (default: 4)')
parser.add_argument('--num-replicas', type=int, default=1, help='Number of Replicas (default: 1)')
parser.add_argument('--task-name', help='Override default task name')
parser.add_argument('--queue-name', help='Override default queue name')
parser.add_argument('--image', help="Overide default image")
parser.add_argument('--conda-env', help='Conda environment to use (default: current environment)')
parser.add_argument('--extra-envs', nargs='+', help='Additional environment variables in format KEY=VALUE')
parser.add_argument('--log-level', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR'], default='INFO',
help='Set logging level (default: INFO)')
return parser.parse_args()
def main():
"""Main execution function."""
args = parse_args()
# Set log level
logger.remove() # Remove existing handlers
logger.add(
"volcano_deploy_{time}.log",
rotation="500 MB",
level=args.log_level,
format="<green>{time:YYYY-MM-DD HH:mm:ss}</green> | <level>{level: <8}</level> | <cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>"
)
logger.add(
lambda msg: print(msg, flush=True),
colorize=True,
level=args.log_level,
format="<green>{time:HH:mm:ss}</green> | <level>{level: <8}</level> | <level>{message}</level>"
)
logger.info("Starting Volcano deployment script")
# Get current conda environment
current_env = get_current_conda_env()
logger.info(f"Current conda environment: {current_env}")
# Prepare configuration overrides
config_overrides = {}
if args.task_name:
config_overrides['task_name'] = args.task_name
if args.queue_name:
config_overrides['queue_name'] = args.queue_name
if args.conda_env:
config_overrides['conda_env_name'] = args.conda_env
if args.image:
config_overrides['image'] = args.image
if args.extra_envs:
default_config = VolcanoConfig()
config_overrides['extra_envs'] = default_config.extra_envs + args.extra_envs
# Initialize deployment
deployer = VolcanoDeployment(config_overrides if config_overrides else None)
# Print deployment configuration
logger.info("\nDeployment configuration summary:")
logger.info(f"Task command: {args.task_cmd}")
logger.info(f"Number of GPUs: {args.num_gpus}")
logger.info(f"Conda environment: {deployer.config.conda_env_name}")
logger.info(f"Task name: {deployer.config.task_name}")
logger.info(f"Queue name: {deployer.config.queue_name}")
logger.info(f"Image name: {deployer.config.image}")
if args.extra_envs:
logger.info(f"Additional environment variables: {args.extra_envs}")
# Confirm deployment
confirm = input("\nProceed with deployment? [y/N]: ")
if confirm.lower() != 'y':
logger.warning("Deployment cancelled by user")
return
# Execute deployment
try:
result = deployer.deploy(args.task_cmd, num_gpus=args.num_gpus, num_replicas=args.num_replicas)
# Print deployment result
if result.returncode == 0:
logger.success("Deployment completed successfully")
else:
logger.error("Deployment failed")
if result.stdout:
logger.info(f"Output: {result.stdout}")
if result.stderr:
logger.warning(f"Errors: {result.stderr}")
except Exception as e:
logger.exception("Deployment failed with exception")
raise
if __name__ == "__main__":
main()