This commit is contained in:
MaiziXiao 2025-05-08 07:26:18 +00:00
parent 23fb3c7fa9
commit 1acb3c30c0
3 changed files with 12 additions and 119 deletions

View File

@ -1,7 +1,8 @@
from opencompass.datasets import NejmaibenchDataset, nejmaibench_llmjudge_postprocess
from opencompass.datasets import NejmaibenchDataset
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.evaluator import GenericLLMEvaluator
import os
@ -88,7 +89,7 @@ eval_cfg = dict(
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=nejmaibench_llmjudge_postprocess),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)

View File

@ -5,7 +5,7 @@ from datasets import Dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
from opencompass.utils import get_data_path, get_logger
from opencompass.utils import get_data_path
from .base import BaseDataset
@ -136,117 +136,4 @@ def answer_cleansing(
if prediction[0] and prediction[0].endswith('.'):
prediction[0] = prediction[0][:-1]
return prediction[0]
def _generic_llmjudge_postprocess(judgement: str):
match = re.search(r'(A|B)', judgement)
grade_letter = (match.group(0) if match else 'B'
) # Default to "INCORRECT" if no match
return grade_letter
def nejmaibench_llmjudge_postprocess(
output: dict,
output_path: str,
dataset: Dataset,
) -> dict:
# Get the original dataset
original_dataset = dataset.reader.dataset['test']
judged_answers = []
original_responses = []
references = []
details = []
# Initialize statistics dictionaries
stats = {'Subject': {}}
total_correct = 0
total_count = 0
# Process each sample
for k, v in output.items():
idx = int(k) # Convert key to integer for indexing
original_responses.append(v['prediction'])
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
# Get category information from the dataset
sample = original_dataset[idx]
subject = sample.get('Subject', 'unknown')
# Initialize category stats if not exists
for level, key in [
('Subject', subject),
]:
if key not in stats[level]:
stats[level][key] = {'correct': 0, 'total': 0}
# Record the judgment
if processed_judge is not None:
judged_answers.append(processed_judge)
try:
gold = v['gold']
references.append(gold)
except KeyError:
get_logger().warning(
f'No gold answer for {k}, use empty string as reference!')
gold = ''
references.append('')
# Check if the answer is correct (A means correct)
is_correct = processed_judge == 'A'
total_count += 1
if is_correct:
total_correct += 1
# Update category stats
for level, key in [
('Subject', subject),
]:
stats[level][key]['correct'] += 1
# Update category totals
for level, key in [
('Subject', subject),
]:
stats[level][key]['total'] += 1
# Add to details
details.append({
'id': k,
'question': sample['question'],
'options': sample['options'],
'origin_prompt': v['origin_prompt'],
'llm_judge': processed_judge,
'gold': gold,
'is_correct': is_correct,
'Subject': subject,
})
# Calculate overall accuracy with two decimal places
overall_accuracy = (round(
(total_correct / total_count * 100), 2) if total_count > 0 else 0.00)
# Initialize results dictionary
results = {
'accuracy': overall_accuracy,
'total_correct': total_correct,
'total_count': total_count,
'details': details,
}
# Calculate accuracy for each category and flatten into results
for level in stats:
for key, value in stats[level].items():
if value['total'] > 0:
# Calculate accuracy with two decimal places
accuracy = round((value['correct'] / value['total'] * 100), 2)
# Create a flattened key for the category
flat_key = f'nejmaibench-{key}'
# Add to results
results[flat_key] = accuracy
return results
return prediction[0]

View File

@ -448,8 +448,8 @@ DATASETS_MAPPING = {
},
"opencompass/nejmaibench": {
"ms_id": "",
"hf_id": "SeanWu25/NEJM-AI_Benchmarking_Medical_Language_Models",
"local": "./opencompass/configs/datasets/nejm_ai_benchmark/data/NEJM_All_Questions_And_Answers.csv",
"hf_id": "",
"local": "./data/nejmaibench/NEJM_All_Questions_And_Answers.csv",
},
}
@ -803,6 +803,11 @@ DATASETS_URL = {
"url":
"http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/ChemBench4K.zip",
"md5": "fc23fd21b2566a5dbbebfa4601d7779c"
},
"nejmaibench": {
"url":
"http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/nejmaibench.zip",
"md5": "e6082cae3596b3ebea73e23ba445b99e"
}
}