mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
fix
This commit is contained in:
parent
4f07a1c457
commit
199052e92e
@ -1,33 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import IFEvalDataset, IFEvaluator
|
||||
from mmengine.config import read_base
|
||||
|
||||
ifeval_reader_cfg = dict(
|
||||
input_columns=['prompt'], output_column='reference')
|
||||
|
||||
ifeval_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{prompt}'),
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
|
||||
ifeval_eval_cfg = dict(
|
||||
evaluator=dict(type=IFEvaluator),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
ifeval_datasets = [
|
||||
dict(
|
||||
abbr='IFEval',
|
||||
type=IFEvalDataset,
|
||||
path='data/ifeval/input_data.jsonl',
|
||||
reader_cfg=ifeval_reader_cfg,
|
||||
infer_cfg=ifeval_infer_cfg,
|
||||
eval_cfg=ifeval_eval_cfg)
|
||||
]
|
||||
with read_base():
|
||||
from .IFEval_gen_353ae7 import ifeval_datasets # noqa: F401, F403
|
@ -1,40 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import Aime2024Dataset, MATHEvaluator, math_postprocess_v2
|
||||
from opencompass.datasets import CustomDataset
|
||||
from mmengine.config import read_base
|
||||
|
||||
|
||||
aime2024_reader_cfg = dict(
|
||||
input_columns=['question'],
|
||||
output_column='answer'
|
||||
)
|
||||
|
||||
|
||||
aime2024_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt='{question}\nPlease reason step by step, and put your final answer within \\boxed{}.'),
|
||||
],
|
||||
)
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer)
|
||||
)
|
||||
|
||||
aime2024_eval_cfg = dict(
|
||||
evaluator=dict(type=MATHEvaluator, version='v2'), pred_postprocessor=dict(type=math_postprocess_v2)
|
||||
)
|
||||
|
||||
aime2024_datasets = [
|
||||
dict(
|
||||
abbr='aime2024',
|
||||
type=CustomDataset,
|
||||
path='opencompass/aime2025',
|
||||
reader_cfg=aime2024_reader_cfg,
|
||||
infer_cfg=aime2024_infer_cfg,
|
||||
eval_cfg=aime2024_eval_cfg,
|
||||
)
|
||||
]
|
||||
with read_base():
|
||||
from .aime2024_gen_17d799 import aime2024_datasets # noqa: F401, F403
|
40
opencompass/configs/datasets/aime2024/aime2024_gen_17d799.py
Normal file
40
opencompass/configs/datasets/aime2024/aime2024_gen_17d799.py
Normal file
@ -0,0 +1,40 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import Aime2024Dataset, MATHEvaluator, math_postprocess_v2
|
||||
from opencompass.datasets import CustomDataset
|
||||
|
||||
|
||||
aime2024_reader_cfg = dict(
|
||||
input_columns=['question'],
|
||||
output_column='answer'
|
||||
)
|
||||
|
||||
|
||||
aime2024_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt='{question}\nPlease reason step by step, and put your final answer within \\boxed{}.'),
|
||||
],
|
||||
)
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer)
|
||||
)
|
||||
|
||||
aime2024_eval_cfg = dict(
|
||||
evaluator=dict(type=MATHEvaluator, version='v2'), pred_postprocessor=dict(type=math_postprocess_v2)
|
||||
)
|
||||
|
||||
aime2024_datasets = [
|
||||
dict(
|
||||
abbr='aime2024',
|
||||
type=CustomDataset,
|
||||
path='opencompass/aime2025',
|
||||
reader_cfg=aime2024_reader_cfg,
|
||||
infer_cfg=aime2024_infer_cfg,
|
||||
eval_cfg=aime2024_eval_cfg,
|
||||
)
|
||||
]
|
@ -1,84 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import CustomDataset
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
from mmengine.config import read_base
|
||||
|
||||
aime2024_reader_cfg = dict(input_columns=['question'], output_column='answer')
|
||||
|
||||
aime2024_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{question}\nRemember to put your final answer within \\boxed{}.',
|
||||
),
|
||||
],
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
<Original Question Begin>: \n{question}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
aime2024_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=CustomDataset,
|
||||
path='opencompass/aime2025',
|
||||
reader_cfg=aime2024_reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
)
|
||||
)
|
||||
|
||||
aime2024_datasets = [
|
||||
dict(
|
||||
abbr='aime2024',
|
||||
type=CustomDataset,
|
||||
path='opencompass/aime2025',
|
||||
reader_cfg=aime2024_reader_cfg,
|
||||
infer_cfg=aime2024_infer_cfg,
|
||||
eval_cfg=aime2024_eval_cfg,
|
||||
)
|
||||
]
|
||||
with read_base():
|
||||
from .aime2024_llmjudge_gen_5e9f4f import aime2024_datasets # noqa: F401, F403
|
@ -1,100 +1,4 @@
|
||||
import os
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||
from opencompass.datasets import BBHDataset, BBHEvaluator, bbh_mcq_postprocess, BBHEvaluator_mcq
|
||||
|
||||
bbh_reader_cfg = dict(input_columns=['input'], output_column='target')
|
||||
|
||||
bbh_multiple_choice_sets = [
|
||||
'temporal_sequences',
|
||||
'disambiguation_qa',
|
||||
'date_understanding',
|
||||
'tracking_shuffled_objects_three_objects',
|
||||
'penguins_in_a_table',
|
||||
'geometric_shapes',
|
||||
'snarks',
|
||||
'ruin_names',
|
||||
'tracking_shuffled_objects_seven_objects',
|
||||
'tracking_shuffled_objects_five_objects',
|
||||
'logical_deduction_three_objects',
|
||||
'hyperbaton',
|
||||
'logical_deduction_five_objects',
|
||||
'logical_deduction_seven_objects',
|
||||
'movie_recommendation',
|
||||
'salient_translation_error_detection',
|
||||
'reasoning_about_colored_objects',
|
||||
]
|
||||
bbh_free_form_sets = [
|
||||
'multistep_arithmetic_two',
|
||||
'navigate',
|
||||
'dyck_languages',
|
||||
'word_sorting',
|
||||
'sports_understanding',
|
||||
'boolean_expressions',
|
||||
'object_counting',
|
||||
'formal_fallacies',
|
||||
'causal_judgement',
|
||||
'web_of_lies',
|
||||
]
|
||||
|
||||
bbh_datasets = []
|
||||
for _name in bbh_multiple_choice_sets:
|
||||
with open(os.path.join(os.path.dirname(__file__), 'lib_prompt', f'{_name}.txt'), 'r') as f:
|
||||
_hint = f.read()
|
||||
bbh_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=
|
||||
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
|
||||
)
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
bbh_eval_cfg = dict(
|
||||
evaluator=dict(type=BBHEvaluator_mcq),
|
||||
pred_role='BOT',
|
||||
pred_postprocessor=dict(type=bbh_mcq_postprocess),
|
||||
dataset_postprocessor=dict(type=bbh_mcq_postprocess))
|
||||
|
||||
bbh_datasets.append(
|
||||
dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
name=_name,
|
||||
abbr='bbh-' + _name,
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
infer_cfg=bbh_infer_cfg.copy(),
|
||||
eval_cfg=bbh_eval_cfg.copy()))
|
||||
|
||||
for _name in bbh_free_form_sets:
|
||||
with open(os.path.join(os.path.dirname(__file__), 'lib_prompt', f'{_name}.txt'), 'r') as f:
|
||||
_hint = f.read()
|
||||
bbh_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=
|
||||
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
|
||||
)
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role='BOT')
|
||||
|
||||
bbh_datasets.append(
|
||||
dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
name=_name,
|
||||
abbr='bbh-' + _name,
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
infer_cfg=bbh_infer_cfg.copy(),
|
||||
eval_cfg=bbh_eval_cfg.copy()))
|
||||
from mmengine.config import read_base
|
||||
|
||||
with read_base():
|
||||
from .bbh_gen_ee62e9 import bbh_datasets # noqa: F401, F403
|
99
opencompass/configs/datasets/bbh/bbh_gen_ee62e9.py
Normal file
99
opencompass/configs/datasets/bbh/bbh_gen_ee62e9.py
Normal file
@ -0,0 +1,99 @@
|
||||
import os
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||
from opencompass.datasets import BBHDataset, BBHEvaluator, bbh_mcq_postprocess, BBHEvaluator_mcq
|
||||
|
||||
bbh_reader_cfg = dict(input_columns=['input'], output_column='target')
|
||||
|
||||
bbh_multiple_choice_sets = [
|
||||
'temporal_sequences',
|
||||
'disambiguation_qa',
|
||||
'date_understanding',
|
||||
'tracking_shuffled_objects_three_objects',
|
||||
'penguins_in_a_table',
|
||||
'geometric_shapes',
|
||||
'snarks',
|
||||
'ruin_names',
|
||||
'tracking_shuffled_objects_seven_objects',
|
||||
'tracking_shuffled_objects_five_objects',
|
||||
'logical_deduction_three_objects',
|
||||
'hyperbaton',
|
||||
'logical_deduction_five_objects',
|
||||
'logical_deduction_seven_objects',
|
||||
'movie_recommendation',
|
||||
'salient_translation_error_detection',
|
||||
'reasoning_about_colored_objects',
|
||||
]
|
||||
bbh_free_form_sets = [
|
||||
'multistep_arithmetic_two',
|
||||
'navigate',
|
||||
'dyck_languages',
|
||||
'word_sorting',
|
||||
'sports_understanding',
|
||||
'boolean_expressions',
|
||||
'object_counting',
|
||||
'formal_fallacies',
|
||||
'causal_judgement',
|
||||
'web_of_lies',
|
||||
]
|
||||
|
||||
bbh_datasets = []
|
||||
for _name in bbh_multiple_choice_sets:
|
||||
with open(os.path.join(os.path.dirname(__file__), 'lib_prompt', f'{_name}.txt'), 'r') as f:
|
||||
_hint = f.read()
|
||||
bbh_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=
|
||||
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
|
||||
)
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
bbh_eval_cfg = dict(
|
||||
evaluator=dict(type=BBHEvaluator_mcq),
|
||||
pred_role='BOT',
|
||||
pred_postprocessor=dict(type=bbh_mcq_postprocess),
|
||||
dataset_postprocessor=dict(type=bbh_mcq_postprocess))
|
||||
|
||||
bbh_datasets.append(
|
||||
dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
name=_name,
|
||||
abbr='bbh-' + _name,
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
infer_cfg=bbh_infer_cfg.copy(),
|
||||
eval_cfg=bbh_eval_cfg.copy()))
|
||||
|
||||
for _name in bbh_free_form_sets:
|
||||
with open(os.path.join(os.path.dirname(__file__), 'lib_prompt', f'{_name}.txt'), 'r') as f:
|
||||
_hint = f.read()
|
||||
bbh_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=
|
||||
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
|
||||
)
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role='BOT')
|
||||
|
||||
bbh_datasets.append(
|
||||
dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
name=_name,
|
||||
abbr='bbh-' + _name,
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
infer_cfg=bbh_infer_cfg.copy(),
|
||||
eval_cfg=bbh_eval_cfg.copy()))
|
@ -1,180 +1,4 @@
|
||||
import os
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||
from opencompass.datasets import BBHDataset, BBHEvaluator, bbh_mcq_postprocess, BBHEvaluator_mcq, generic_llmjudge_postprocess
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from mmengine.config import read_base
|
||||
|
||||
|
||||
bbh_reader_cfg = dict(input_columns=['input'], output_column='target')
|
||||
|
||||
bbh_multiple_choice_sets = [
|
||||
'temporal_sequences',
|
||||
'disambiguation_qa',
|
||||
'date_understanding',
|
||||
'tracking_shuffled_objects_three_objects',
|
||||
'penguins_in_a_table',
|
||||
'geometric_shapes',
|
||||
'snarks',
|
||||
'ruin_names',
|
||||
'tracking_shuffled_objects_seven_objects',
|
||||
'tracking_shuffled_objects_five_objects',
|
||||
'logical_deduction_three_objects',
|
||||
'hyperbaton',
|
||||
'logical_deduction_five_objects',
|
||||
'logical_deduction_seven_objects',
|
||||
'movie_recommendation',
|
||||
'salient_translation_error_detection',
|
||||
'reasoning_about_colored_objects',
|
||||
]
|
||||
bbh_free_form_sets = [
|
||||
'multistep_arithmetic_two',
|
||||
'navigate',
|
||||
'dyck_languages',
|
||||
'word_sorting',
|
||||
'sports_understanding',
|
||||
'boolean_expressions',
|
||||
'object_counting',
|
||||
'formal_fallacies',
|
||||
'causal_judgement',
|
||||
'web_of_lies',
|
||||
]
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
|
||||
<Original Question Begin>: {question}\n {options_str} \n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
|
||||
bbh_datasets = []
|
||||
for _name in bbh_multiple_choice_sets:
|
||||
with open(os.path.join(os.path.dirname(__file__), 'lib_prompt', f'{_name}.txt'), 'r') as f:
|
||||
_hint = f.read()
|
||||
bbh_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=
|
||||
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
|
||||
)
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
bbh_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt = GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
name=_name,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
bbh_datasets.append(
|
||||
dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
name=_name,
|
||||
abbr='bbh-' + _name,
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
infer_cfg=bbh_infer_cfg.copy(),
|
||||
eval_cfg=bbh_eval_cfg.copy()))
|
||||
|
||||
for _name in bbh_free_form_sets:
|
||||
with open(os.path.join(os.path.dirname(__file__), 'lib_prompt', f'{_name}.txt'), 'r') as f:
|
||||
_hint = f.read()
|
||||
bbh_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=
|
||||
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
|
||||
)
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
bbh_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
name=_name,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
bbh_datasets.append(
|
||||
dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
name=_name,
|
||||
abbr='bbh-' + _name,
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
infer_cfg=bbh_infer_cfg.copy(),
|
||||
eval_cfg=bbh_eval_cfg.copy()))
|
||||
with read_base():
|
||||
from .bbh_llmjudge_gen_ee62e9 import bbh_datasets # noqa: F401, F403
|
180
opencompass/configs/datasets/bbh/bbh_llmjudge_gen_ee62e9.py
Normal file
180
opencompass/configs/datasets/bbh/bbh_llmjudge_gen_ee62e9.py
Normal file
@ -0,0 +1,180 @@
|
||||
import os
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||
from opencompass.datasets import BBHDataset, BBHEvaluator, bbh_mcq_postprocess, BBHEvaluator_mcq, generic_llmjudge_postprocess
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
|
||||
|
||||
bbh_reader_cfg = dict(input_columns=['input'], output_column='target')
|
||||
|
||||
bbh_multiple_choice_sets = [
|
||||
'temporal_sequences',
|
||||
'disambiguation_qa',
|
||||
'date_understanding',
|
||||
'tracking_shuffled_objects_three_objects',
|
||||
'penguins_in_a_table',
|
||||
'geometric_shapes',
|
||||
'snarks',
|
||||
'ruin_names',
|
||||
'tracking_shuffled_objects_seven_objects',
|
||||
'tracking_shuffled_objects_five_objects',
|
||||
'logical_deduction_three_objects',
|
||||
'hyperbaton',
|
||||
'logical_deduction_five_objects',
|
||||
'logical_deduction_seven_objects',
|
||||
'movie_recommendation',
|
||||
'salient_translation_error_detection',
|
||||
'reasoning_about_colored_objects',
|
||||
]
|
||||
bbh_free_form_sets = [
|
||||
'multistep_arithmetic_two',
|
||||
'navigate',
|
||||
'dyck_languages',
|
||||
'word_sorting',
|
||||
'sports_understanding',
|
||||
'boolean_expressions',
|
||||
'object_counting',
|
||||
'formal_fallacies',
|
||||
'causal_judgement',
|
||||
'web_of_lies',
|
||||
]
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
|
||||
<Original Question Begin>: {question}\n {options_str} \n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
|
||||
bbh_datasets = []
|
||||
for _name in bbh_multiple_choice_sets:
|
||||
with open(os.path.join(os.path.dirname(__file__), 'lib_prompt', f'{_name}.txt'), 'r') as f:
|
||||
_hint = f.read()
|
||||
bbh_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=
|
||||
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
|
||||
)
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
bbh_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt = GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
name=_name,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
bbh_datasets.append(
|
||||
dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
name=_name,
|
||||
abbr='bbh-' + _name,
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
infer_cfg=bbh_infer_cfg.copy(),
|
||||
eval_cfg=bbh_eval_cfg.copy()))
|
||||
|
||||
for _name in bbh_free_form_sets:
|
||||
with open(os.path.join(os.path.dirname(__file__), 'lib_prompt', f'{_name}.txt'), 'r') as f:
|
||||
_hint = f.read()
|
||||
bbh_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=
|
||||
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
|
||||
)
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
bbh_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
name=_name,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
bbh_datasets.append(
|
||||
dict(
|
||||
type=BBHDataset,
|
||||
path='opencompass/bbh',
|
||||
name=_name,
|
||||
abbr='bbh-' + _name,
|
||||
reader_cfg=bbh_reader_cfg,
|
||||
infer_cfg=bbh_infer_cfg.copy(),
|
||||
eval_cfg=bbh_eval_cfg.copy()))
|
@ -1,46 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import (BigCodeBenchDataset, BigCodeBenchEvaluator)
|
||||
from mmengine.config import read_base
|
||||
|
||||
bigcodebench_hard_reader_cfg = dict(
|
||||
input_columns=['instruct_prompt'],
|
||||
output_column='test',
|
||||
)
|
||||
|
||||
bigcodebench_hard_infer_cfg = dict(prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[dict(role='system', fallback_role='HUMAN', prompt='')],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt='{instruct_prompt}'),
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer,)
|
||||
)
|
||||
|
||||
bigcodebench_hard_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=BigCodeBenchEvaluator,
|
||||
release_version='v0.1.2',
|
||||
eval_type='instruct',
|
||||
# remote_execute_api='https://bigcode-bigcodebench-evaluator.hf.space/',
|
||||
remote_execute_api=
|
||||
'https://opencompass-opencompass-bigcodebench-evaluator.hf.space', # noqa: E501
|
||||
dataset_version='hard',
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
bigcodebench_hard_instruct_datasets = [
|
||||
dict(
|
||||
abbr='bigcodebench_hard_instruct',
|
||||
type=BigCodeBenchDataset,
|
||||
path='opencompass/bigcodebench',
|
||||
reader_cfg=bigcodebench_hard_reader_cfg,
|
||||
infer_cfg=bigcodebench_hard_infer_cfg,
|
||||
eval_cfg=bigcodebench_hard_eval_cfg,
|
||||
release_version='v0.1.2',
|
||||
dataset_version='hard',
|
||||
)
|
||||
]
|
||||
with read_base():
|
||||
from .bigcodebench_hard_instruct_gen import bigcodebench_hard_instruct_datasets # noqa: F401, F403
|
@ -1,4 +1,4 @@
|
||||
from mmengine.config import read_base
|
||||
|
||||
with read_base():
|
||||
from .bigcodebench_hard_instruct_gen_8815eb import bigcodebench_hard_instruct_datasets # noqa: F401, F403
|
||||
from .bigcodebench_hard_instruct_gen_c3d5ad import bigcodebench_hard_instruct_datasets # noqa: F401, F403
|
||||
|
@ -15,8 +15,9 @@ bigcodebench_hard_infer_cfg = dict(prompt_template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt='{instruct_prompt}'),
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer)
|
||||
)
|
||||
|
||||
bigcodebench_hard_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
|
@ -1,130 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||
from opencompass.datasets import CMMLUDataset
|
||||
from opencompass.utils.text_postprocessors import match_answer_pattern
|
||||
from mmengine.config import read_base
|
||||
|
||||
cmmlu_subject_mapping = {
|
||||
'agronomy': '农学',
|
||||
'anatomy': '解剖学',
|
||||
'ancient_chinese': '古汉语',
|
||||
'arts': '艺术学',
|
||||
'astronomy': '天文学',
|
||||
'business_ethics': '商业伦理',
|
||||
'chinese_civil_service_exam': '中国公务员考试',
|
||||
'chinese_driving_rule': '中国驾驶规则',
|
||||
'chinese_food_culture': '中国饮食文化',
|
||||
'chinese_foreign_policy': '中国外交政策',
|
||||
'chinese_history': '中国历史',
|
||||
'chinese_literature': '中国文学',
|
||||
'chinese_teacher_qualification': '中国教师资格',
|
||||
'clinical_knowledge': '临床知识',
|
||||
'college_actuarial_science': '大学精算学',
|
||||
'college_education': '大学教育学',
|
||||
'college_engineering_hydrology': '大学工程水文学',
|
||||
'college_law': '大学法律',
|
||||
'college_mathematics': '大学数学',
|
||||
'college_medical_statistics': '大学医学统计',
|
||||
'college_medicine': '大学医学',
|
||||
'computer_science': '计算机科学',
|
||||
'computer_security': '计算机安全',
|
||||
'conceptual_physics': '概念物理学',
|
||||
'construction_project_management': '建设工程管理',
|
||||
'economics': '经济学',
|
||||
'education': '教育学',
|
||||
'electrical_engineering': '电气工程',
|
||||
'elementary_chinese': '小学语文',
|
||||
'elementary_commonsense': '小学常识',
|
||||
'elementary_information_and_technology': '小学信息技术',
|
||||
'elementary_mathematics': '初等数学',
|
||||
'ethnology': '民族学',
|
||||
'food_science': '食品科学',
|
||||
'genetics': '遗传学',
|
||||
'global_facts': '全球事实',
|
||||
'high_school_biology': '高中生物',
|
||||
'high_school_chemistry': '高中化学',
|
||||
'high_school_geography': '高中地理',
|
||||
'high_school_mathematics': '高中数学',
|
||||
'high_school_physics': '高中物理学',
|
||||
'high_school_politics': '高中政治',
|
||||
'human_sexuality': '人类性行为',
|
||||
'international_law': '国际法学',
|
||||
'journalism': '新闻学',
|
||||
'jurisprudence': '法理学',
|
||||
'legal_and_moral_basis': '法律与道德基础',
|
||||
'logical': '逻辑学',
|
||||
'machine_learning': '机器学习',
|
||||
'management': '管理学',
|
||||
'marketing': '市场营销',
|
||||
'marxist_theory': '马克思主义理论',
|
||||
'modern_chinese': '现代汉语',
|
||||
'nutrition': '营养学',
|
||||
'philosophy': '哲学',
|
||||
'professional_accounting': '专业会计',
|
||||
'professional_law': '专业法学',
|
||||
'professional_medicine': '专业医学',
|
||||
'professional_psychology': '专业心理学',
|
||||
'public_relations': '公共关系',
|
||||
'security_study': '安全研究',
|
||||
'sociology': '社会学',
|
||||
'sports_science': '体育学',
|
||||
'traditional_chinese_medicine': '中医中药',
|
||||
'virology': '病毒学',
|
||||
'world_history': '世界历史',
|
||||
'world_religions': '世界宗教'
|
||||
}
|
||||
|
||||
QUERY_TEMPLATE = """
|
||||
你回答的最后一行**必须**是以下格式 '答案: $选项' (不带引号), 其中选项是ABCD之一. 请在回答之前一步步思考.
|
||||
|
||||
{question}
|
||||
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
D) {D}
|
||||
""".strip()
|
||||
|
||||
cmmlu_all_sets = list(cmmlu_subject_mapping.keys())
|
||||
|
||||
cmmlu_datasets = []
|
||||
for _name in cmmlu_all_sets:
|
||||
_ch_name = cmmlu_subject_mapping[_name]
|
||||
prompt_prefix = f'请回答以下关于{_ch_name}的单项选择题, '
|
||||
cmmlu_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=prompt_prefix+QUERY_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
cmmlu_eval_cfg = dict(
|
||||
evaluator=dict(type=AccEvaluator),
|
||||
pred_postprocessor=dict(
|
||||
type=match_answer_pattern,
|
||||
# answer_pattern=r'(?i)答案\s*:\s*([A-D])'
|
||||
answer_pattern=r'(?i)答案\s*:\s*[\W]*([A-D])[\W]*',
|
||||
)
|
||||
)
|
||||
cmmlu_datasets.append(
|
||||
dict(
|
||||
type=CMMLUDataset,
|
||||
path='opencompass/cmmlu',
|
||||
name=_name,
|
||||
abbr=f'cmmlu-{_name}',
|
||||
reader_cfg=dict(
|
||||
input_columns=['question', 'A', 'B', 'C', 'D'],
|
||||
output_column='answer',
|
||||
train_split='dev',
|
||||
test_split='test'),
|
||||
infer_cfg=cmmlu_infer_cfg,
|
||||
eval_cfg=cmmlu_eval_cfg,
|
||||
))
|
||||
|
||||
del _name, _ch_name
|
||||
with read_base():
|
||||
from .cmmlu_0shot_cot_gen_305931 import cmmlu_datasets # noqa: F401, F403
|
@ -1,179 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||
from opencompass.datasets import CMMLUDataset
|
||||
from opencompass.utils.text_postprocessors import match_answer_pattern
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
from mmengine.config import read_base
|
||||
|
||||
cmmlu_subject_mapping = {
|
||||
'agronomy': '农学',
|
||||
'anatomy': '解剖学',
|
||||
'ancient_chinese': '古汉语',
|
||||
'arts': '艺术学',
|
||||
'astronomy': '天文学',
|
||||
'business_ethics': '商业伦理',
|
||||
'chinese_civil_service_exam': '中国公务员考试',
|
||||
'chinese_driving_rule': '中国驾驶规则',
|
||||
'chinese_food_culture': '中国饮食文化',
|
||||
'chinese_foreign_policy': '中国外交政策',
|
||||
'chinese_history': '中国历史',
|
||||
'chinese_literature': '中国文学',
|
||||
'chinese_teacher_qualification': '中国教师资格',
|
||||
'clinical_knowledge': '临床知识',
|
||||
'college_actuarial_science': '大学精算学',
|
||||
'college_education': '大学教育学',
|
||||
'college_engineering_hydrology': '大学工程水文学',
|
||||
'college_law': '大学法律',
|
||||
'college_mathematics': '大学数学',
|
||||
'college_medical_statistics': '大学医学统计',
|
||||
'college_medicine': '大学医学',
|
||||
'computer_science': '计算机科学',
|
||||
'computer_security': '计算机安全',
|
||||
'conceptual_physics': '概念物理学',
|
||||
'construction_project_management': '建设工程管理',
|
||||
'economics': '经济学',
|
||||
'education': '教育学',
|
||||
'electrical_engineering': '电气工程',
|
||||
'elementary_chinese': '小学语文',
|
||||
'elementary_commonsense': '小学常识',
|
||||
'elementary_information_and_technology': '小学信息技术',
|
||||
'elementary_mathematics': '初等数学',
|
||||
'ethnology': '民族学',
|
||||
'food_science': '食品科学',
|
||||
'genetics': '遗传学',
|
||||
'global_facts': '全球事实',
|
||||
'high_school_biology': '高中生物',
|
||||
'high_school_chemistry': '高中化学',
|
||||
'high_school_geography': '高中地理',
|
||||
'high_school_mathematics': '高中数学',
|
||||
'high_school_physics': '高中物理学',
|
||||
'high_school_politics': '高中政治',
|
||||
'human_sexuality': '人类性行为',
|
||||
'international_law': '国际法学',
|
||||
'journalism': '新闻学',
|
||||
'jurisprudence': '法理学',
|
||||
'legal_and_moral_basis': '法律与道德基础',
|
||||
'logical': '逻辑学',
|
||||
'machine_learning': '机器学习',
|
||||
'management': '管理学',
|
||||
'marketing': '市场营销',
|
||||
'marxist_theory': '马克思主义理论',
|
||||
'modern_chinese': '现代汉语',
|
||||
'nutrition': '营养学',
|
||||
'philosophy': '哲学',
|
||||
'professional_accounting': '专业会计',
|
||||
'professional_law': '专业法学',
|
||||
'professional_medicine': '专业医学',
|
||||
'professional_psychology': '专业心理学',
|
||||
'public_relations': '公共关系',
|
||||
'security_study': '安全研究',
|
||||
'sociology': '社会学',
|
||||
'sports_science': '体育学',
|
||||
'traditional_chinese_medicine': '中医中药',
|
||||
'virology': '病毒学',
|
||||
'world_history': '世界历史',
|
||||
'world_religions': '世界宗教',
|
||||
}
|
||||
|
||||
QUERY_TEMPLATE = """
|
||||
你回答的最后一行**必须**是以下格式 '答案: $选项' (不带引号), 其中选项是ABCD之一.
|
||||
{question}
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
D) {D}
|
||||
""".strip()
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
<Original Question Begin>: \n {question}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
cmmlu_all_sets = list(cmmlu_subject_mapping.keys())
|
||||
|
||||
cmmlu_datasets = []
|
||||
for _name in cmmlu_all_sets:
|
||||
_ch_name = cmmlu_subject_mapping[_name]
|
||||
prompt_prefix = f'请回答以下关于{_ch_name}的单项选择题, '
|
||||
cmmlu_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=prompt_prefix + QUERY_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
cmmlu_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=CMMLUDataset,
|
||||
path='opencompass/cmmlu',
|
||||
name=_name,
|
||||
reader_cfg=dict(
|
||||
input_columns=['question', 'A', 'B', 'C', 'D'],
|
||||
output_column='answer',
|
||||
train_split='dev',
|
||||
test_split='test',
|
||||
),
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
cmmlu_datasets.append(
|
||||
dict(
|
||||
type=CMMLUDataset,
|
||||
path='opencompass/cmmlu',
|
||||
name=_name,
|
||||
abbr=f'cmmlu-{_name}',
|
||||
reader_cfg=dict(
|
||||
input_columns=['question', 'A', 'B', 'C', 'D'],
|
||||
output_column='answer',
|
||||
train_split='dev',
|
||||
test_split='test',
|
||||
),
|
||||
infer_cfg=cmmlu_infer_cfg,
|
||||
eval_cfg=cmmlu_eval_cfg,
|
||||
mode='singlescore',
|
||||
)
|
||||
)
|
||||
|
||||
del _name, _ch_name
|
||||
with read_base():
|
||||
from .cmmlu_llmjudge_gen_e1cd9a import cmmlu_datasets # noqa: F401, F403
|
@ -1,34 +1,4 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import DropOpenAIDataset, DropOpenAIEvaluator
|
||||
|
||||
with read_base():
|
||||
from .drop_examples import drop_examples # noqa: F401, F403
|
||||
|
||||
drop_reader_cfg = dict(
|
||||
input_columns=['prompt'],
|
||||
output_column='answers',
|
||||
train_split='validation',
|
||||
test_split='validation',
|
||||
)
|
||||
|
||||
template = f'You will be asked to read a passage and answer a question. Some examples of passages and Q&A are provided below.\n\n{drop_examples}\n\n# Your Task\n\n---\n{{prompt}}\n\nThink step by step, then write a line of the form "Answer: $ANSWER" at the end of your response.'
|
||||
|
||||
drop_infer_cfg = dict(
|
||||
prompt_template=dict(type=PromptTemplate, template=dict(round=[dict(role='HUMAN', prompt=template)])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
|
||||
drop_eval_cfg = dict(evaluator=dict(type=DropOpenAIEvaluator))
|
||||
|
||||
drop_datasets = [
|
||||
dict(
|
||||
abbr='drop',
|
||||
type=DropOpenAIDataset,
|
||||
path='data/drop_simple_eval/dev.jsonl',
|
||||
reader_cfg=drop_reader_cfg,
|
||||
infer_cfg=drop_infer_cfg,
|
||||
eval_cfg=drop_eval_cfg)
|
||||
]
|
||||
from .drop_openai_simple_evals_gen_3857b0 import drop_datasets # noqa: F401, F403
|
@ -1,86 +1,4 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import DropOpenAIDataset
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
|
||||
with read_base():
|
||||
from .drop_examples import drop_examples # noqa: F401, F403
|
||||
|
||||
drop_reader_cfg = dict(
|
||||
input_columns=['prompt'],
|
||||
output_column='answers',
|
||||
train_split='validation',
|
||||
test_split='validation',
|
||||
)
|
||||
|
||||
template = f'You will be asked to read a passage and answer a question. Some examples of passages and Q&A are provided below.\n\n{drop_examples}\n\n# Your Task\n\n---\n{{prompt}}\n\nThink step by step, then write a line of the form "Answer: $ANSWER" at the end of your response.'
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
<Original Question Begin>: {prompt}\n \n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answers}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
drop_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[dict(role='HUMAN', prompt=template)]),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
drop_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=DropOpenAIDataset,
|
||||
path='data/drop_simple_eval/dev.jsonl',
|
||||
reader_cfg=drop_reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
drop_datasets = [
|
||||
dict(
|
||||
abbr='drop',
|
||||
type=DropOpenAIDataset,
|
||||
path='data/drop_simple_eval/dev.jsonl',
|
||||
reader_cfg=drop_reader_cfg,
|
||||
infer_cfg=drop_infer_cfg,
|
||||
eval_cfg=drop_eval_cfg,
|
||||
)
|
||||
]
|
||||
from .drop_llmjudge_gen_3857b0 import drop_datasets # noqa: F401, F403
|
@ -1,52 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import GPQADataset, GPQA_Simple_Eval_postprocess, GPQAEvaluator
|
||||
from mmengine.config import read_base
|
||||
|
||||
# openai_simple_eval prompt
|
||||
align_prompt = """
|
||||
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.
|
||||
|
||||
{question}
|
||||
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
D) {D}
|
||||
""".strip()
|
||||
|
||||
gpqa_reader_cfg = dict(
|
||||
input_columns=['question', 'A', 'B', 'C', 'D'],
|
||||
output_column='answer')
|
||||
|
||||
gpqa_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=align_prompt),
|
||||
], )),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
|
||||
gpqa_eval_cfg = dict(evaluator=dict(type=GPQAEvaluator),
|
||||
pred_postprocessor=dict(type=GPQA_Simple_Eval_postprocess))
|
||||
|
||||
gpqa_datasets = []
|
||||
gpqa_subsets = {
|
||||
# 'extended': 'gpqa_extended.csv',
|
||||
# 'main': 'gpqa_main.csv',
|
||||
'diamond': 'gpqa_diamond.csv'
|
||||
}
|
||||
|
||||
for split in list(gpqa_subsets.keys()):
|
||||
gpqa_datasets.append(
|
||||
dict(
|
||||
abbr='GPQA_' + split,
|
||||
type=GPQADataset,
|
||||
path='./data/gpqa/',
|
||||
name=gpqa_subsets[split],
|
||||
reader_cfg=gpqa_reader_cfg,
|
||||
infer_cfg=gpqa_infer_cfg,
|
||||
eval_cfg=gpqa_eval_cfg)
|
||||
)
|
||||
with read_base():
|
||||
from .gpqa_openai_simple_evals_gen_5aeece import gpqa_datasets # noqa: F401, F403
|
@ -1,105 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import GPQADataset, GPQA_Simple_Eval_postprocess
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
from mmengine.config import read_base
|
||||
|
||||
# openai_simple_eval prompt
|
||||
align_prompt = """
|
||||
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD.
|
||||
|
||||
{question}
|
||||
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
D) {D}
|
||||
""".strip()
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
<Original Question Begin>: {question}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
gpqa_reader_cfg = dict(
|
||||
input_columns=['question', 'A', 'B', 'C', 'D'],
|
||||
output_column='answer')
|
||||
|
||||
gpqa_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=align_prompt),
|
||||
], )),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
|
||||
gpqa_datasets = []
|
||||
gpqa_subsets = {
|
||||
# 'extended': 'gpqa_extended.csv',
|
||||
# 'main': 'gpqa_main.csv',
|
||||
'diamond': 'gpqa_diamond.csv'
|
||||
}
|
||||
|
||||
for split in list(gpqa_subsets.keys()):
|
||||
gpqa_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=GPQADataset,
|
||||
path='./data/gpqa/',
|
||||
name=gpqa_subsets[split],
|
||||
reader_cfg=gpqa_reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
gpqa_datasets.append(
|
||||
dict(
|
||||
abbr='GPQA_' + split,
|
||||
type=GPQADataset,
|
||||
path='./data/gpqa/',
|
||||
name=gpqa_subsets[split],
|
||||
reader_cfg=gpqa_reader_cfg,
|
||||
infer_cfg=gpqa_infer_cfg,
|
||||
eval_cfg=gpqa_eval_cfg,
|
||||
mode='singlescore',
|
||||
)
|
||||
)
|
||||
with read_base():
|
||||
from .gpqa_0shot_nocot_genericllmeval_gen_772ea0 import gpqa_datasets # noqa: F401, F403
|
||||
|
@ -1,58 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import FixKRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccwithDetailsEvaluator
|
||||
from opencompass.datasets import HellaswagDatasetwithICE
|
||||
from opencompass.utils.text_postprocessors import first_option_postprocess
|
||||
from mmengine.config import read_base
|
||||
|
||||
hellaswag_reader_cfg = dict(
|
||||
input_columns=['ctx', 'A', 'B', 'C', 'D'],
|
||||
output_column='label',
|
||||
train_split='train',
|
||||
test_split='val',
|
||||
)
|
||||
|
||||
hellaswag_infer_cfg = dict(
|
||||
ice_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=f'{{ctx}}\nA) {{A}}\nB) {{B}}\nC) {{C}}\nD) {{D}}\nWhat is the right option?'),
|
||||
dict(role='BOT', prompt='{label}\n'),
|
||||
]
|
||||
),
|
||||
),
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(role='HUMAN', prompt='Continue the following text without adding any additional information or formatting:\n'),
|
||||
'</E>',
|
||||
],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=f'{{ctx}}\nA) {{A}}\nB) {{B}}\nC) {{C}}\nD) {{D}}\nWhat is the right option?'),
|
||||
dict(role='BOT', prompt='{label}\n'),
|
||||
],
|
||||
),
|
||||
ice_token='</E>',
|
||||
),
|
||||
retriever=dict(type=FixKRetriever, fix_id_list=list(range(10))),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
hellaswag_eval_cfg = dict(
|
||||
evaluator=dict(type=AccwithDetailsEvaluator),
|
||||
pred_role='BOT',
|
||||
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'),
|
||||
)
|
||||
|
||||
hellaswag_datasets = [
|
||||
dict(
|
||||
abbr='hellaswag',
|
||||
type=HellaswagDatasetwithICE,
|
||||
path='opencompass/hellaswag_ice',
|
||||
reader_cfg=hellaswag_reader_cfg,
|
||||
infer_cfg=hellaswag_infer_cfg,
|
||||
eval_cfg=hellaswag_eval_cfg,
|
||||
)
|
||||
]
|
||||
with read_base():
|
||||
from .hellaswag_10shot_gen_e42710 import hellaswag_datasets # noqa: F401, F403
|
@ -1,94 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccwithDetailsEvaluator
|
||||
from opencompass.datasets import HellaswagDatasetwithICE
|
||||
from opencompass.utils.text_postprocessors import first_option_postprocess
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
from mmengine.config import read_base
|
||||
|
||||
hellaswag_reader_cfg = dict(
|
||||
input_columns=['ctx', 'A', 'B', 'C', 'D'],
|
||||
output_column='label',
|
||||
train_split='train',
|
||||
test_split='val',
|
||||
)
|
||||
|
||||
align_prompt = """Continue the following text without adding any additional information or formatting:
|
||||
{ctx}
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
D) {D}
|
||||
What is the right option?'"""
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
<Original Question Begin>: {ctx}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
hellaswag_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=align_prompt),
|
||||
],
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
hellaswag_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=HellaswagDatasetwithICE,
|
||||
path='opencompass/hellaswag_ice',
|
||||
reader_cfg=hellaswag_reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
)
|
||||
|
||||
hellaswag_datasets = [
|
||||
dict(
|
||||
abbr='hellaswag',
|
||||
type=HellaswagDatasetwithICE,
|
||||
path='opencompass/hellaswag_ice',
|
||||
reader_cfg=hellaswag_reader_cfg,
|
||||
infer_cfg=hellaswag_infer_cfg,
|
||||
eval_cfg=hellaswag_eval_cfg,
|
||||
)
|
||||
]
|
||||
with read_base():
|
||||
from .hellaswag_llmjudge_gen_809ef1 import hellaswag_datasets # noqa: F401, F403
|
@ -1,36 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
|
||||
from mmengine.config import read_base
|
||||
|
||||
humaneval_reader_cfg = dict(
|
||||
input_columns=['prompt'], output_column='task_id', train_split='test')
|
||||
|
||||
# TODO: allow empty output-column
|
||||
humaneval_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='Read the following function signature and docstring, and fully implement the function described. Your response should only contain the code for this function.\n{prompt}'),
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
|
||||
humaneval_eval_cfg = dict(
|
||||
evaluator=dict(type=HumanEvalEvaluator),
|
||||
pred_role='BOT',
|
||||
k=[1, 10, 100], # the parameter only for humaneval
|
||||
pred_postprocessor=dict(type=humaneval_postprocess_v2),
|
||||
)
|
||||
|
||||
humaneval_datasets = [
|
||||
dict(
|
||||
abbr='openai_humaneval',
|
||||
type=HumanevalDataset,
|
||||
path='opencompass/humaneval',
|
||||
reader_cfg=humaneval_reader_cfg,
|
||||
infer_cfg=humaneval_infer_cfg,
|
||||
eval_cfg=humaneval_eval_cfg)
|
||||
]
|
||||
with read_base():
|
||||
from .humaneval_openai_sample_evals_gen_dcae0e import humaneval_datasets # noqa: F401, F403
|
@ -1,60 +1,4 @@
|
||||
from opencompass.datasets.korbench.korbench import korbenchDataset, korbenchEvaluator
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from mmengine.config import read_base
|
||||
|
||||
categories = ['cipher', 'counterfactual', 'logic', 'operation', 'puzzle']
|
||||
|
||||
korbench_0shot_single_datasets = []
|
||||
|
||||
for category in categories:
|
||||
# Prompt template
|
||||
prompt_template = dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=''
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{prompt}' # f-string
|
||||
)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
# Reader configuration
|
||||
reader_cfg = dict(
|
||||
input_columns=['prompt'],
|
||||
output_column='answer',
|
||||
)
|
||||
|
||||
# Inference configuration
|
||||
infer_cfg = dict(
|
||||
prompt_template=prompt_template,
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
# Evaluation configuration
|
||||
eval_cfg = dict(
|
||||
evaluator=dict(type=korbenchEvaluator),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
korbench_dataset = dict(
|
||||
type=korbenchDataset,
|
||||
abbr=f'korbench_{category}',
|
||||
path='opencompass/korbench',
|
||||
prompt_mode='0_shot',
|
||||
category=category,
|
||||
reader_cfg=reader_cfg,
|
||||
infer_cfg=infer_cfg,
|
||||
eval_cfg=eval_cfg,
|
||||
)
|
||||
|
||||
korbench_0shot_single_datasets.append(korbench_dataset)
|
||||
with read_base():
|
||||
from .korbench_single_0_shot_gen import korbench_0shot_single_datasets # noqa: F401, F403
|
@ -1,113 +1,4 @@
|
||||
from opencompass.datasets.korbench.korbench import korbenchDataset, korbenchEvaluator
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
from mmengine.config import read_base
|
||||
|
||||
categories = ['cipher', 'counterfactual', 'logic', 'operation', 'puzzle']
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
<Original Question Begin>: {question}\n {options_str} \n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
|
||||
|
||||
korbench_0shot_single_datasets = []
|
||||
|
||||
for category in categories:
|
||||
# Prompt template
|
||||
prompt_template = dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=''
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{prompt}' # f-string
|
||||
)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
# Reader configuration
|
||||
reader_cfg = dict(
|
||||
input_columns=['prompt'],
|
||||
output_column='answer',
|
||||
)
|
||||
|
||||
# Inference configuration
|
||||
infer_cfg = dict(
|
||||
prompt_template=prompt_template,
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
# Evaluation configuration
|
||||
eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=korbenchDataset,
|
||||
path='opencompass/korbench',
|
||||
reader_cfg=reader_cfg,
|
||||
prompt_mode='0_shot',
|
||||
category=category,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
korbench_dataset = dict(
|
||||
type=korbenchDataset,
|
||||
abbr=f'korbench_{category}',
|
||||
path='opencompass/korbench',
|
||||
prompt_mode='0_shot',
|
||||
category=category,
|
||||
reader_cfg=reader_cfg,
|
||||
infer_cfg=infer_cfg,
|
||||
eval_cfg=eval_cfg,
|
||||
)
|
||||
|
||||
korbench_0shot_single_datasets.append(korbench_dataset)
|
||||
with read_base():
|
||||
from .korbench_single_0shot_genericllmeval_gen_56cf43 import korbench_0shot_single_datasets # noqa: F401, F403
|
@ -37,7 +37,7 @@ for category in categories:
|
||||
infer_cfg = dict(
|
||||
prompt_template=prompt_template,
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer, max_out_len=1024),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
# Evaluation configuration
|
||||
|
@ -0,0 +1,116 @@
|
||||
from opencompass.datasets.korbench.korbench import korbenchDataset, korbenchEvaluator
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
|
||||
categories = ['cipher', 'counterfactual', 'logic', 'operation', 'puzzle']
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
|
||||
<Original Question Begin>: \n{prompt}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
korbench_0shot_single_datasets = []
|
||||
|
||||
for category in categories:
|
||||
# Prompt template
|
||||
prompt_template = dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=''
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{prompt}' # f-string
|
||||
)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
# Reader configuration
|
||||
reader_cfg = dict(
|
||||
input_columns=['prompt'],
|
||||
output_column='answer',
|
||||
)
|
||||
|
||||
# Inference configuration
|
||||
infer_cfg = dict(
|
||||
prompt_template=prompt_template,
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
# Evaluation configuration
|
||||
eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=korbenchDataset,
|
||||
path='opencompass/korbench',
|
||||
prompt_mode='0_shot',
|
||||
category=category,
|
||||
reader_cfg=reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
# Dataset
|
||||
korbench_dataset = dict(
|
||||
type=korbenchDataset,
|
||||
abbr=f'korbench_{category}',
|
||||
path='opencompass/korbench',
|
||||
prompt_mode='0_shot',
|
||||
category=category,
|
||||
reader_cfg=reader_cfg,
|
||||
infer_cfg=infer_cfg,
|
||||
eval_cfg=eval_cfg,
|
||||
mode='singlescore',
|
||||
)
|
||||
|
||||
korbench_0shot_single_datasets.append(korbench_dataset)
|
@ -1,164 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import (
|
||||
LCBCodeGenerationDataset,
|
||||
LCBCodeExecutionDataset,
|
||||
LCBTestOutputPredictionDataset,
|
||||
LCBCodeGenerationEvaluator,
|
||||
LCBCodeExecutionEvaluator,
|
||||
LCBTestOutputEvaluator
|
||||
)
|
||||
from opencompass.datasets.livecodebench import TestOutputPromptConstants
|
||||
from mmengine.config import read_base
|
||||
|
||||
|
||||
lcb_code_generation_reader_cfg = dict(
|
||||
input_columns=[
|
||||
'question_content',
|
||||
'format_prompt',
|
||||
],
|
||||
# output_column='evaluation_sample',
|
||||
output_column='question_id',
|
||||
)
|
||||
|
||||
SYSTEM_MESSAGE_GENERIC = f'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
|
||||
|
||||
prompt_template = '### Question:\n{question_content}\n\n{format_prompt}' + \
|
||||
'### Answer: (use the provided format with backticks)\n\n'
|
||||
|
||||
|
||||
# Code Generation Tasks
|
||||
lcb_code_generation_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=prompt_template
|
||||
)
|
||||
]
|
||||
)
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer)
|
||||
)
|
||||
|
||||
lcb_code_generation_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=LCBCodeGenerationEvaluator,
|
||||
num_process_evaluate=4,
|
||||
timeout=6,
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
LCBCodeGeneration_dataset = dict(
|
||||
type=LCBCodeGenerationDataset,
|
||||
abbr='lcb_code_generation',
|
||||
path='opencompass/code_generation_lite',
|
||||
reader_cfg=lcb_code_generation_reader_cfg,
|
||||
infer_cfg=lcb_code_generation_infer_cfg,
|
||||
eval_cfg=lcb_code_generation_eval_cfg
|
||||
)
|
||||
|
||||
# Code Execution Dataset
|
||||
lcb_code_execution_reader_cfg = dict(
|
||||
input_columns=[
|
||||
'prompt',
|
||||
],
|
||||
output_column='evaluation_sample',
|
||||
)
|
||||
|
||||
lcb_code_execution_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt='You are an expert at Python programming, code execution, test case generation, and fuzzing.'
|
||||
),
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{prompt}'
|
||||
)
|
||||
]
|
||||
)
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer)
|
||||
)
|
||||
|
||||
lcb_code_execution_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=LCBCodeExecutionEvaluator,
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
LCBCodeExecution_dataset = dict(
|
||||
type=LCBCodeExecutionDataset,
|
||||
abbr='lcb_code_execution',
|
||||
path='opencompass/execution-v2',
|
||||
reader_cfg=lcb_code_execution_reader_cfg,
|
||||
infer_cfg=lcb_code_execution_infer_cfg,
|
||||
eval_cfg=lcb_code_execution_eval_cfg,
|
||||
)
|
||||
|
||||
# TestOuputput Dataset
|
||||
lcb_test_output_reader_cfg = dict(
|
||||
input_columns=[
|
||||
'prompt',
|
||||
],
|
||||
output_column='evaluation_sample',
|
||||
)
|
||||
|
||||
system_prompt = 'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
|
||||
|
||||
lcb_test_output_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
# begin=[
|
||||
# dict(
|
||||
# role='SYSTEM',
|
||||
# prompt=system_prompt
|
||||
# ),
|
||||
# ],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{prompt}'
|
||||
)
|
||||
]
|
||||
)
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer)
|
||||
)
|
||||
|
||||
lcb_test_output_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=LCBTestOutputEvaluator,
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
LCBTestOutput_dataset = dict(
|
||||
type=LCBTestOutputPredictionDataset,
|
||||
abbr='lcb_test_output',
|
||||
path='opencompass/test_generation',
|
||||
reader_cfg=lcb_test_output_reader_cfg,
|
||||
infer_cfg=lcb_test_output_infer_cfg,
|
||||
eval_cfg=lcb_test_output_eval_cfg,
|
||||
)
|
||||
|
||||
LCB_datasets = [
|
||||
LCBCodeGeneration_dataset,
|
||||
LCBCodeExecution_dataset,
|
||||
LCBTestOutput_dataset,
|
||||
]
|
||||
with read_base():
|
||||
from .livecodebench_gen_a4f90b import LCB_datasets # noqa: F401, F403
|
@ -0,0 +1,96 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
from opencompass.datasets import MATHDataset
|
||||
|
||||
|
||||
# ----------------------------- Detailed Config -----------------------------
|
||||
|
||||
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
|
||||
|
||||
math_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt='{problem}\nRemember to put your final answer within \\boxed{}.'),
|
||||
]
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
|
||||
<Original Question Begin>: \n{problem}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{solution}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
# Evaluation configuration
|
||||
math_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt = GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=MATHDataset,
|
||||
path='opencompass/math',
|
||||
file_name = 'test_prm800k_500.json',
|
||||
reader_cfg=math_reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
|
||||
math_datasets = [
|
||||
dict(
|
||||
type=MATHDataset,
|
||||
abbr='math_prm800k_500-llmjudge',
|
||||
path='opencompass/math',
|
||||
file_name = 'test_prm800k_500.json',
|
||||
reader_cfg=math_reader_cfg,
|
||||
infer_cfg=math_infer_cfg,
|
||||
eval_cfg=math_eval_cfg,
|
||||
mode='singlescore',
|
||||
)
|
||||
]
|
@ -1,45 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import (
|
||||
MATHDataset,
|
||||
MATHEvaluator,
|
||||
math_postprocess_v2,
|
||||
normalize_final_answer,
|
||||
)
|
||||
from mmengine.config import read_base
|
||||
|
||||
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
|
||||
|
||||
math_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{problem}\nPlease reason step by step, and put your final answer within \\boxed{}.',
|
||||
),
|
||||
]
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
# postprocess v2
|
||||
math_eval_cfg = dict(
|
||||
evaluator=dict(type=MATHEvaluator, version='v2'),
|
||||
pred_postprocessor=dict(type=math_postprocess_v2),
|
||||
)
|
||||
|
||||
math_datasets = [
|
||||
dict(
|
||||
type=MATHDataset,
|
||||
abbr='math_prm800k_500',
|
||||
path='opencompass/math',
|
||||
file_name='test_prm800k_500.json',
|
||||
reader_cfg=math_reader_cfg,
|
||||
infer_cfg=math_infer_cfg,
|
||||
eval_cfg=math_eval_cfg,
|
||||
)
|
||||
]
|
||||
with read_base():
|
||||
from .math_prm800k_500_0shot_cot_gen import math_datasets # noqa: F401, F403
|
@ -1,91 +1,4 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
from opencompass.datasets import MATHDataset
|
||||
from mmengine.config import read_base
|
||||
|
||||
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
|
||||
|
||||
math_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt='{problem}\nRemember to put your final answer within \\boxed{}.'),
|
||||
]
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
|
||||
<Original Question Begin>: \n{problem}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{solution}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
# Evaluation configuration
|
||||
math_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=MATHDataset,
|
||||
path='opencompass/math',
|
||||
file_name='test_prm800k_500.json',
|
||||
reader_cfg=math_reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
math_datasets = [
|
||||
dict(
|
||||
type=MATHDataset,
|
||||
abbr='math_prm800k_500-llmjudge',
|
||||
path='opencompass/math',
|
||||
file_name='test_prm800k_500.json',
|
||||
reader_cfg=math_reader_cfg,
|
||||
infer_cfg=math_infer_cfg,
|
||||
eval_cfg=math_eval_cfg,
|
||||
mode='singlescore',
|
||||
)
|
||||
]
|
||||
with read_base():
|
||||
from .math_prm800k_500_0shot_nocot_genericllmeval_gen_6ff468 import math_datasets # noqa: F401, F403
|
@ -1,59 +1,4 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||
from opencompass.datasets import MMLUDataset
|
||||
from opencompass.utils.text_postprocessors import match_answer_pattern
|
||||
|
||||
with read_base():
|
||||
from .mmlu_all_sets import mmlu_all_sets
|
||||
|
||||
# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
|
||||
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar
|
||||
|
||||
QUERY_TEMPLATE = """
|
||||
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.
|
||||
|
||||
{input}
|
||||
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
D) {D}
|
||||
""".strip()
|
||||
|
||||
mmlu_reader_cfg = dict(
|
||||
input_columns=['input', 'A', 'B', 'C', 'D'],
|
||||
output_column='target',
|
||||
train_split='dev')
|
||||
|
||||
mmlu_datasets = []
|
||||
for name in mmlu_all_sets:
|
||||
mmlu_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
mmlu_eval_cfg = dict(
|
||||
evaluator=dict(type=AccEvaluator),
|
||||
pred_postprocessor=dict(type=match_answer_pattern, answer_pattern=r'(?i)ANSWER\s*:\s*([A-D])'))
|
||||
|
||||
mmlu_datasets.append(
|
||||
dict(
|
||||
abbr=f'lukaemon_mmlu_{name}',
|
||||
type=MMLUDataset,
|
||||
path='opencompass/mmlu',
|
||||
name=name,
|
||||
reader_cfg=mmlu_reader_cfg,
|
||||
infer_cfg=mmlu_infer_cfg,
|
||||
eval_cfg=mmlu_eval_cfg,
|
||||
))
|
||||
from .mmlu_openai_simple_evals_gen_b618ea import mmlu_datasets # noqa: F401, F403
|
@ -1,106 +1,4 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||
from opencompass.datasets import MMLUDataset
|
||||
from opencompass.utils.text_postprocessors import match_answer_pattern
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
|
||||
with read_base():
|
||||
from .mmlu_all_sets import mmlu_all_sets
|
||||
|
||||
# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
|
||||
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar
|
||||
|
||||
QUERY_TEMPLATE = """
|
||||
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD.
|
||||
{input}
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
D) {D}
|
||||
""".strip()
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
<Original Question Begin>: {input}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{target}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
mmlu_reader_cfg = dict(
|
||||
input_columns=['input', 'A', 'B', 'C', 'D'],
|
||||
output_column='target',
|
||||
train_split='dev',
|
||||
)
|
||||
|
||||
mmlu_datasets = []
|
||||
for name in mmlu_all_sets:
|
||||
mmlu_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
mmlu_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=MMLUDataset,
|
||||
path='opencompass/mmlu',
|
||||
name=name,
|
||||
reader_cfg=mmlu_reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
mmlu_datasets.append(
|
||||
dict(
|
||||
abbr=f'lukaemon_mmlu_{name}',
|
||||
type=MMLUDataset,
|
||||
path='opencompass/mmlu',
|
||||
name=name,
|
||||
reader_cfg=mmlu_reader_cfg,
|
||||
infer_cfg=mmlu_infer_cfg,
|
||||
eval_cfg=mmlu_eval_cfg,
|
||||
mode='singlescore',
|
||||
)
|
||||
)
|
||||
from .mmlu_llmjudge_gen_f4336b import mmlu_datasets # noqa: F401, F403
|
@ -1,64 +1,4 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||
from opencompass.datasets import MMLUProDataset
|
||||
from opencompass.utils.text_postprocessors import match_answer_pattern
|
||||
|
||||
with read_base():
|
||||
from .mmlu_pro_categories import categories
|
||||
|
||||
|
||||
|
||||
QUERY_TEMPLATE = """
|
||||
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
|
||||
|
||||
Question:\n
|
||||
{question}
|
||||
|
||||
Options:\n
|
||||
{options_str}
|
||||
|
||||
""".strip()
|
||||
|
||||
mmlu_pro_datasets = []
|
||||
|
||||
for category in categories:
|
||||
mmlu_pro_reader_cfg = dict(
|
||||
input_columns=['question', 'cot_content', 'options_str'],
|
||||
output_column='answer',
|
||||
train_split='validation',
|
||||
test_split='test',
|
||||
)
|
||||
mmlu_pro_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN',
|
||||
prompt=QUERY_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
mmlu_pro_eval_cfg = dict(
|
||||
evaluator=dict(type=AccEvaluator),
|
||||
pred_postprocessor=dict(
|
||||
type=match_answer_pattern,
|
||||
answer_pattern=r'(?i)ANSWER\s*:\s*([A-P])')
|
||||
)
|
||||
|
||||
mmlu_pro_datasets.append(
|
||||
dict(
|
||||
abbr=f'mmlu_pro_{category.replace(" ", "_")}',
|
||||
type=MMLUProDataset,
|
||||
path='opencompass/mmlu_pro',
|
||||
category=category,
|
||||
reader_cfg=mmlu_pro_reader_cfg,
|
||||
infer_cfg=mmlu_pro_infer_cfg,
|
||||
eval_cfg=mmlu_pro_eval_cfg,
|
||||
))
|
||||
from .mmlu_pro_0shot_cot_gen_08c1de import mmlu_pro_datasets # noqa: F401, F403
|
@ -1,99 +1,4 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import MMLUProDataset, generic_llmjudge_postprocess
|
||||
|
||||
with read_base():
|
||||
from .mmlu_pro_categories import categories
|
||||
|
||||
QUERY_TEMPLATE = """
|
||||
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
|
||||
Question:\n
|
||||
{question}
|
||||
Options:\n
|
||||
{options_str}
|
||||
""".strip()
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
<Original Question Begin>: {question}\n {options_str} \n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
mmlu_pro_datasets = []
|
||||
|
||||
for category in categories:
|
||||
mmlu_pro_reader_cfg = dict(
|
||||
input_columns=['question', 'cot_content', 'options_str'],
|
||||
output_column='answer',
|
||||
train_split='validation',
|
||||
test_split='test',
|
||||
)
|
||||
mmlu_pro_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
mmlu_pro_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=MMLUProDataset,
|
||||
path='opencompass/mmlu_pro',
|
||||
category=category,
|
||||
reader_cfg=mmlu_pro_reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
)
|
||||
|
||||
mmlu_pro_datasets.append(
|
||||
dict(
|
||||
abbr=f'mmlu_pro_{category.replace(" ", "_")}',
|
||||
type=MMLUProDataset,
|
||||
path='opencompass/mmlu_pro',
|
||||
category=category,
|
||||
reader_cfg=mmlu_pro_reader_cfg,
|
||||
infer_cfg=mmlu_pro_infer_cfg,
|
||||
eval_cfg=mmlu_pro_eval_cfg,
|
||||
)
|
||||
)
|
||||
from .mmlu_pro_llm_judge_gen_6f107c import mmlu_pro_datasets # noqa: F401, F403
|
@ -0,0 +1,99 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import MMLUProDataset, generic_llmjudge_postprocess
|
||||
|
||||
with read_base():
|
||||
from .mmlu_pro_categories import categories
|
||||
|
||||
QUERY_TEMPLATE = """
|
||||
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
|
||||
Question:\n
|
||||
{question}
|
||||
Options:\n
|
||||
{options_str}
|
||||
""".strip()
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
<Original Question Begin>: {question}\n {options_str} \n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
mmlu_pro_datasets = []
|
||||
|
||||
for category in categories:
|
||||
mmlu_pro_reader_cfg = dict(
|
||||
input_columns=['question', 'cot_content', 'options_str'],
|
||||
output_column='answer',
|
||||
train_split='validation',
|
||||
test_split='test',
|
||||
)
|
||||
mmlu_pro_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
mmlu_pro_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=MMLUProDataset,
|
||||
path='opencompass/mmlu_pro',
|
||||
category=category,
|
||||
reader_cfg=mmlu_pro_reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
)
|
||||
|
||||
mmlu_pro_datasets.append(
|
||||
dict(
|
||||
abbr=f'mmlu_pro_{category.replace(" ", "_")}',
|
||||
type=MMLUProDataset,
|
||||
path='opencompass/mmlu_pro',
|
||||
category=category,
|
||||
reader_cfg=mmlu_pro_reader_cfg,
|
||||
infer_cfg=mmlu_pro_infer_cfg,
|
||||
eval_cfg=mmlu_pro_eval_cfg,
|
||||
)
|
||||
)
|
Loading…
Reference in New Issue
Block a user