[Feature] Evaluation Results Persistence (#1894)

* feat results_station.py

* lint

* feat save_to_station

* feat result_station.py and lint

* feat

* fix

* fix and lint

* fix

* fix subjective processing

* fix

* fix

* style function name

* lint
This commit is contained in:
Myhs_phz 2025-03-05 18:33:34 +08:00 committed by GitHub
parent 54324657f0
commit 1585c0adbe
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 471 additions and 2 deletions

View File

@ -12,7 +12,8 @@ from mmengine.config import Config, DictAction
from opencompass.registry import PARTITIONERS, RUNNERS, build_from_cfg
from opencompass.runners import SlurmRunner
from opencompass.summarizers import DefaultSummarizer
from opencompass.utils import LarkReporter, get_logger
from opencompass.utils import (LarkReporter, get_logger, read_from_station,
save_to_station)
from opencompass.utils.run import (fill_eval_cfg, fill_infer_cfg,
get_config_from_arg)
@ -127,6 +128,27 @@ def parse_args():
'correctness of each sample, bpb, etc.',
action='store_true',
)
parser.add_argument('-sp',
'--station-path',
help='Path to your results station.',
type=str,
default=None,
)
parser.add_argument('--station-overwrite',
help='Whether to overwrite the results at station.',
action='store_true',
)
parser.add_argument(
'--read-from-station',
help='Whether to save the evaluation results to the '
'data station.',
action='store_true',
)
# set srun args
slurm_parser = parser.add_argument_group('slurm_args')
parse_slurm_args(slurm_parser)
@ -260,6 +282,12 @@ def main():
# types cannot be serialized
cfg = Config.fromfile(output_config_path, format_python_code=False)
# get existed results from station
if args.read_from_station:
existing_results_list = read_from_station(cfg, args)
rs_exist_results = [comb['combination'] for comb in existing_results_list]
cfg['rs_exist_results'] = rs_exist_results
# report to lark bot if specify --lark
if not args.lark:
cfg['lark_bot_url'] = None
@ -267,6 +295,7 @@ def main():
content = f'{getpass.getuser()}\'s task has been launched!'
LarkReporter(cfg['lark_bot_url']).post(content)
# infer
if args.mode in ['all', 'infer']:
# When user have specified --slurm or --dlc, or have not set
# "infer" in config, we will provide a default configuration
@ -348,6 +377,10 @@ def main():
else:
runner(tasks)
# save to station
if args.station_path is not None or cfg.get('station_path') is not None:
save_to_station(cfg, args)
# visualize
if args.mode in ['all', 'eval', 'viz']:
summarizer_cfg = cfg.get('summarizer', {})

View File

@ -102,6 +102,7 @@ class BasePartitioner:
return tasks
def parse_model_dataset_args(self, cfg: ConfigDict):
models = cfg['models']
datasets = cfg['datasets']
@ -109,7 +110,24 @@ class BasePartitioner:
if 'model_dataset_combinations' in sig.parameters:
combs = cfg.get('model_dataset_combinations', None)
if combs is None:
combs = [{'models': models, 'datasets': datasets}]
if 'rs_exist_results' in cfg.keys():
rs_exist_results = cfg['rs_exist_results']
combs = []
for model in models:
comb = {'models': [model], 'datasets': datasets}
combs.append(comb)
for i in range(len(combs)):
combs[i]['datasets'] = [
dataset for dataset in combs[i]['datasets'] if [
model_abbr_from_cfg(combs[i]['models'][0]),
dataset_abbr_from_cfg(dataset)
] not in rs_exist_results
]
combs = [
comb for comb in combs if len(comb['datasets']) != 0
]
else:
combs = [{'models': models, 'datasets': datasets}]
else:
# sanity check
model_abbrs = [model_abbr_from_cfg(model) for model in models]

View File

@ -14,4 +14,5 @@ from .model_postprocessors import * # noqa
from .network import * # noqa
from .postprocessors import * # noqa
from .prompt import * # noqa
from .result_station import * # noqa
from .text_postprocessors import * # noqa

View File

@ -0,0 +1,417 @@
import json
import os
import os.path as osp
import re
from opencompass.utils.abbr import (dataset_abbr_from_cfg,
deal_with_judge_model_abbr,
model_abbr_from_cfg)
def save_to_station(cfg, args):
if args.station_path is not None:
station_path = args.station_path
else:
station_path = cfg.get('station_path')
work_dict = cfg['work_dir']
# objective dataset processing
if 'judge_models' not in cfg.keys():
model_list = [model_abbr_from_cfg(model) for model in cfg['models']]
dataset_list = [
dataset_abbr_from_cfg(dataset) for dataset in cfg['datasets']
]
rs_exist_results = []
if 'rs_exist_results' in cfg.keys():
rs_exist_results = cfg['rs_exist_results']
for dataset in dataset_list:
result_path = osp.join(station_path, dataset)
if not osp.exists(result_path):
os.makedirs(result_path)
for model in model_list:
if ([model, dataset] in rs_exist_results
and not args.station_overwrite):
continue
result_file_name = model + '.json'
if osp.exists(osp.join(
result_path,
result_file_name)) and not args.station_overwrite:
print('result of {} with {} already exists'.format(
dataset, model))
continue
else:
# get result dict
local_result_path = osp.join(work_dict, 'results', model)
local_result_json = osp.join(local_result_path,
dataset + '.json')
if not osp.exists(local_result_json):
if args.mode == 'viz':
continue
raise ValueError(
'invalid file: {}'.format(local_result_json))
with open(local_result_json, 'r') as f:
this_result = json.load(f)
f.close()
# get prediction list
local_prediction_path = osp.join(work_dict, 'predictions',
model)
local_prediction_regex = \
rf'^{re.escape(dataset)}(?:_\d+)?\.json$'
local_prediction_json = find_files_by_regex(
local_prediction_path, local_prediction_regex)
if not check_filenames(
dataset,
local_prediction_json) and args.mode != 'viz':
raise ValueError('invalid filelist: {}'.format(
local_prediction_json))
this_prediction = []
for prediction_json in local_prediction_json:
with open(
osp.join(local_prediction_path,
prediction_json), 'r') as f:
this_prediction_load_json = json.load(f)
f.close()
for prekey in this_prediction_load_json.keys():
this_prediction.append(
this_prediction_load_json[prekey])
# get config dict
model_cfg = [
i for i in cfg['models']
if model_abbr_from_cfg(i) == model
][0]
dataset_cfg = [
i for i in cfg['datasets']
if dataset_abbr_from_cfg(i) == dataset
][0]
this_cfg = {'models': model_cfg, 'datasets': dataset_cfg}
# dict combine
data_model_results = {
'predictions': this_prediction,
'results': this_result,
'cfg': this_cfg
}
with open(osp.join(result_path, result_file_name),
'w') as f:
json.dump(data_model_results,
f,
ensure_ascii=False,
indent=4)
f.close()
print(
'successfully save result of {} with {} to the station'
.format(dataset, model))
return True
# subjective processing
else:
model_list = [model for model in cfg['models']]
judge_list = [judge_model for judge_model in cfg['judge_models']]
model_pair_list = [[
deal_with_judge_model_abbr(model, judge_model)
for judge_model in judge_list
] for model in model_list]
dataset_list = [[
dataset_abbr_from_cfg(dataset),
[dataset_abbr_from_cfg(base) for base in dataset['base_models']]
] if 'base_models' in dataset.keys() else
[dataset_abbr_from_cfg(dataset), ['']]
for dataset in cfg['datasets']]
rs_exist_results = []
if 'rs_exist_results' in cfg.keys():
rs_exist_results = cfg['rs_exist_results']
for pair_of_dataset_and_base in dataset_list:
dataset, base_list = pair_of_dataset_and_base[
0], pair_of_dataset_and_base[1]
result_path = osp.join(station_path, dataset)
if not osp.exists(result_path):
os.makedirs(result_path)
for base_model in base_list:
base_model_name = base_model
if base_model_name != '':
base_model_name += '_'
for model_pair_sub_list in model_pair_list:
for model_pair in model_pair_sub_list:
model = model_abbr_from_cfg(model_pair[0])
model_result = model_abbr_from_cfg(model_pair)
if ([model, dataset] in rs_exist_results
and not args.station_overwrite):
continue
result_file_name = (base_model_name + model_result +
'.json')
if osp.exists(osp.join(result_path, result_file_name)
) and not args.station_overwrite:
print('{} at {} already exists'.format(
result_file_name, result_path))
continue
else:
# get result dict
local_result_path = osp.join(
work_dict, 'results',
base_model_name + model_result)
local_result_json = osp.join(
local_result_path, dataset + '.json')
if not osp.exists(local_result_json):
if args.mode == 'viz':
continue
raise ValueError('invalid file: {}'.format(
local_result_json))
with open(local_result_json, 'r') as f:
this_result = json.load(f)
f.close()
# get prediction list
local_prediction_path = osp.join(
work_dict, 'predictions', model)
local_prediction_regex = \
rf'^{re.escape(dataset)}(?:_\d+)?\.json$'
local_prediction_json = find_files_by_regex(
local_prediction_path, local_prediction_regex)
if not check_filenames(dataset,
local_prediction_json
) and args.mode != 'viz':
raise ValueError('invalid filelist: {}'.format(
local_prediction_json))
this_prediction = []
for prediction_json in local_prediction_json:
with open(
osp.join(local_prediction_path,
prediction_json), 'r') as f:
this_prediction_load_json = json.load(f)
f.close()
for prekey in this_prediction_load_json.keys():
this_prediction.append(
this_prediction_load_json[prekey])
# get config dict
model_cfg = [
i for i in cfg['models']
if model_abbr_from_cfg(i) == model
][0]
dataset_cfg = [
i for i in cfg['datasets']
if dataset_abbr_from_cfg(i) == dataset
][0]
judge_model_cfg = [
i for i in cfg['judge_models']
if 'judged-by--' + model_abbr_from_cfg(i) ==
model_abbr_from_cfg(model_pair[1])
]
this_cfg = {
'models': model_cfg,
'datasets': dataset_cfg,
'judge_models': judge_model_cfg
}
# dict combine
data_model_results = {
'predictions': this_prediction,
'results': this_result,
'cfg': this_cfg
}
with open(osp.join(result_path, result_file_name),
'w') as f:
json.dump(data_model_results,
f,
ensure_ascii=False,
indent=4)
f.close()
print('successfully save result: {} at {} to the'
'station'.format(result_file_name,
result_path))
return True
def read_from_station(cfg, args):
assert args.station_path is not None or cfg.get('station_path') is not None
if args.station_path is not None:
station_path = args.station_path
else:
station_path = cfg.get('station_path')
# objective check
if 'judge_models' not in cfg.keys():
model_list = [model_abbr_from_cfg(model) for model in cfg['models']]
dataset_list = [
dataset_abbr_from_cfg(dataset) for dataset in cfg['datasets']
]
existing_results_list = []
result_local_path = osp.join(cfg['work_dir'], 'results')
if not osp.exists(result_local_path):
os.makedirs(result_local_path)
for dataset in dataset_list:
for model in model_list:
result_file_path = osp.join(station_path, dataset,
model + '.json')
if not osp.exists(result_file_path):
print('do not find result file: {} with {} at station'.
format(model, dataset))
continue
else:
print('find result file: {} with {} at station'.format(
model, dataset))
with open(result_file_path, 'r') as f:
download_json = json.load(f)
f.close()
existing_results_list.append({
'combination': [model, dataset],
'file':
download_json
})
# save results to local
for i in existing_results_list:
this_result = i['file']['results']
this_result_local_path = osp.join(result_local_path,
i['combination'][0])
if not osp.exists(this_result_local_path):
os.makedirs(this_result_local_path)
this_result_local_file_path = osp.join(
this_result_local_path, i['combination'][1] + '.json')
if osp.exists(this_result_local_file_path):
continue
with open(this_result_local_file_path, 'w') as f:
json.dump(this_result, f, ensure_ascii=False, indent=4)
f.close()
return existing_results_list
# subjective check
else:
model_list = [model for model in cfg['models']]
judge_list = [judge_model for judge_model in cfg['judge_models']]
model_pair_list = [[
deal_with_judge_model_abbr(model, judge_model)
for judge_model in judge_list
] for model in model_list]
dataset_list = [[
dataset_abbr_from_cfg(dataset),
[dataset_abbr_from_cfg(base) for base in dataset['base_models']]
] if 'base_models' in dataset.keys() else
[dataset_abbr_from_cfg(dataset), ['']]
for dataset in cfg['datasets']]
existing_results_list = []
result_local_path = osp.join(cfg['work_dir'], 'results')
if not osp.exists(result_local_path):
os.makedirs(result_local_path)
for pair_of_dataset_and_base in dataset_list:
dataset, base_list = pair_of_dataset_and_base[
0], pair_of_dataset_and_base[1]
for model_pair_sub_list in model_pair_list:
result_file_path_list_origin = []
for model_pair in model_pair_sub_list:
model_result = model_abbr_from_cfg(model_pair)
for base_model in base_list:
base_model_name = base_model
if base_model_name != '':
base_model_name += '_'
result_file_path_list_origin.append(
osp.join(station_path, dataset,
base_model_name + model_result + '.json'))
result_file_path_list = [
result_file_path
for result_file_path in result_file_path_list_origin
if osp.exists(result_file_path)
]
model = model_abbr_from_cfg(model_pair_sub_list[0][0])
# save all parts of results to local
for result_file_path in result_file_path_list:
with open(result_file_path, 'r') as f:
this_result = json.load(f)['results']
f.close()
this_result_local_path = osp.join(
result_local_path,
osp.splitext(osp.basename(result_file_path))[0])
if not osp.exists(this_result_local_path):
os.makedirs(this_result_local_path)
this_result_local_file_path = osp.join(
this_result_local_path, dataset + '.json')
if osp.exists(this_result_local_file_path):
continue
with open(this_result_local_file_path, 'w') as f:
json.dump(this_result, f, ensure_ascii=False, indent=4)
f.close()
# check whether complete
if len(result_file_path_list) == len(
result_file_path_list_origin):
print('find complete results of {} with {} at station'.
format(model, dataset))
existing_results_list.append({
'combination': [model, dataset],
'file':
result_file_path_list
})
else:
print('results of {} with {} at station is not complete'.
format(model, dataset))
return existing_results_list
def find_files_by_regex(directory, pattern):
regex = re.compile(pattern)
matched_files = []
for filename in os.listdir(directory):
if regex.match(filename):
matched_files.append(filename)
return matched_files
def check_filenames(x, filenames):
if not filenames:
return False
single_pattern = re.compile(rf'^{re.escape(x)}\.json$')
numbered_pattern = re.compile(rf'^{re.escape(x)}_(\d+)\.json$')
is_single = all(single_pattern.match(name) for name in filenames)
is_numbered = all(numbered_pattern.match(name) for name in filenames)
if not (is_single or is_numbered):
return False
if is_single:
return len(filenames) == 1
if is_numbered:
numbers = []
for name in filenames:
match = numbered_pattern.match(name)
if match:
numbers.append(int(match.group(1)))
if sorted(numbers) != list(range(len(numbers))):
return False
return True