revise latest conflict

This commit is contained in:
marcry 2025-05-12 11:10:36 +00:00
commit 1425f423f4
24 changed files with 1127 additions and 110 deletions

View File

@ -611,6 +611,12 @@
paper: https://dl.acm.org/doi/pdf/10.1145/3580305.3599790
configpath: opencompass/configs/datasets/humanevalx/humanevalx_gen.py
configpath_llmjudge: ''
- humaneval_pro:
name: HumanEval Pro
category: Code
paper: https://arxiv.org/abs/2412.21199
configpath: opencompass/configs/datasets/humaneval_pro/humaneval_pro_gen.py
configpath_llmjudge: ''
- hungarian_math:
name: Hungarian_Math
category: Math
@ -695,6 +701,12 @@
paper: ''
configpath: opencompass/configs/datasets/mbpp_plus/mbpp_plus_gen.py
configpath_llmjudge: ''
- mbpp_pro:
name: MBPP Pro
category: Code
paper: https://arxiv.org/abs/2412.21199
configpath: opencompass/configs/datasets/mbpp_pro/mbpp_pro_gen.py
configpath_llmjudge: ''
- mgsm:
name: MGSM
category: Language / Math
@ -1065,6 +1077,12 @@
paper: https://arxiv.org/pdf/2402.09391
configpath: opencompass/configs/datasets/SmolInstruct/smolinstruct_gen.py
configpath_llmjudge: ''
- SciKnowEval:
name: SciKnowEval
category: Science
paper: https://arxiv.org/abs/2406.09098
configpath: opencompass/configs/datasets/SciKnowEval/SciKnowEval_gen_ebe47d.py
configpath_llmjudge: opencompass/configs/datasets/SciKnowEval/SciKnowEval_llmjudge_gen_ebe47d.py
- internsandbox:
name: InternSandbox
category: Reasoning/Code/Agent

View File

@ -0,0 +1,88 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets import HLEDataset
# ----------------------------- Detailed Config -----------------------------
math_reader_cfg = dict(input_columns=['problem'], output_column='answer')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{problem}\nRemember to put your final answer within \\boxed{}.'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{problem}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
# Evaluation configuration
math_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dataset_cfg=dict(
type=HLEDataset,
path='cais/hle',
reader_cfg=math_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
)
hle_datasets = [
dict(
type=HLEDataset,
abbr='hle_llmjudge',
path='cais/hle',
category='Biology/Medicine',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
)
]

View File

@ -0,0 +1,92 @@
from opencompass.datasets import SciKnowEvalDataset, SciKnowEvalEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
ZERO_SHOT_PROMPT = '{q4}'
# Reader configuration
reader_cfg = dict(
input_columns=[
'prompt',
'question',
'choices',
'label',
'answerKey',
'type',
'domain',
'details',
'answer',
'q4'
],
output_column='answerKey',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(type=SciKnowEvalEvaluator),
pred_role='BOT',
)
sciknoweval_dataset_biology = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_biology',
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
subset='biology',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
sciknoweval_dataset_chemistry = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_chemistry',
path='hicai-zju/SciKnowEval',
subset='chemistry',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
sciknoweval_dataset_material = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_material',
path='hicai-zju/SciKnowEval',
subset='material',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
sciknoweval_dataset_physics = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_physics',
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
subset='physics',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
sciknoweval_datasets = [sciknoweval_dataset_biology, sciknoweval_dataset_chemistry, sciknoweval_dataset_physics, sciknoweval_dataset_material]

View File

@ -0,0 +1,232 @@
from opencompass.datasets import SciKnowEvalDataset
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.evaluator import GenericLLMEvaluator
ZERO_SHOT_PROMPT = '{q4}'
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: Q: {q4}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answerKey}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
# Reader configuration
reader_cfg = dict(
input_columns=[
'prompt',
'question',
'choices',
'label',
'answerKey',
'type',
'domain',
'details',
'answer',
'q4'
],
output_column='answerKey',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg_biology = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=SciKnowEvalDataset,
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
subset='biology',
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
eval_cfg_chemistry = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=SciKnowEvalDataset,
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
subset='chemistry',
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
eval_cfg_material = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=SciKnowEvalDataset,
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
subset='material',
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
eval_cfg_physics = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=SciKnowEvalDataset,
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
subset='physics',
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
sciknoweval_dataset_biology = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_biology_llmjudge',
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
subset='biology',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg_biology,
)
sciknoweval_dataset_chemistry = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_chemistry_llmjudge',
path='hicai-zju/SciKnowEval',
subset='chemistry',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg_chemistry,
)
sciknoweval_dataset_material = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_material_llmjudge',
path='hicai-zju/SciKnowEval',
subset='material',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg_material,
)
sciknoweval_dataset_physics = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_physics_llmjudge',
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
subset='physics',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg_physics,
)
sciknoweval_datasets = [sciknoweval_dataset_biology, sciknoweval_dataset_chemistry, sciknoweval_dataset_physics, sciknoweval_dataset_material]

View File

@ -0,0 +1,17 @@
# HumanEval pro
## OC results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 65 |
| qwen2.5-14b-instruct-hf | 67 |
| deepseek-v2-lite-chat-hf | 35 |
## CodeEval-pro results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 65 |
| qwen2.5-14b-instruct-hf | 65 |
| deepseek-v2-lite-chat-hf | 28 |

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .humaneval_pro_gen_3dc067 import humanevalpro_datasets # noqa: F401, F403

View File

@ -0,0 +1,46 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalevalProDataset, HumanevalProEvaluator, humaneval_postprocess_v2
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
humanevalpro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
humanevalpro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humanevalpro_eval_cfg = dict(
evaluator=dict(type=HumanevalProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space')
)
humanevalpro_datasets = [
dict(
abbr='humaneval_pro',
type=HumanevalevalProDataset,
path='opencompass/humaneval_pro',
reader_cfg=humanevalpro_reader_cfg,
infer_cfg=humanevalpro_infer_cfg,
eval_cfg=humanevalpro_eval_cfg,)
]

View File

@ -0,0 +1,48 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalevalProDataset, HumanevalProEvaluator, humaneval_postprocess_v2
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
humanevalpro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
humanevalpro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humanevalpro_eval_cfg = dict(
evaluator=dict(type=HumanevalProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space')
)
humanevalpro_datasets = [
dict(
abbr='humaneval_pro',
type=HumanevalevalProDataset,
path='opencompass/humaneval_pro',
reader_cfg=humanevalpro_reader_cfg,
infer_cfg=humanevalpro_infer_cfg,
eval_cfg=humanevalpro_eval_cfg,
n=5,
k=3)
]

View File

@ -0,0 +1,17 @@
# MBPP pro
## OC results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 66 |
| qwen2.5-14b-instruct-hf | 64 |
| deepseek-v2-lite-chat-hf | 36 |
## CodeEval-pro results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 65 |
| qwen2.5-14b-instruct-hf | 65 |
| deepseek-v2-lite-chat-hf | 39 |

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .mbpp_pro_gen_3dc067 import mbpppro_datasets # noqa: F401, F403

View File

@ -0,0 +1,46 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MBPPProDataset, MBPPProEvaluator
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
mbpppro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
mbpppro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
mbpppro_eval_cfg = dict(
evaluator=dict(type=MBPPProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space'),
)
mbpppro_datasets = [
dict(
abbr='mbpp_pro',
type=MBPPProDataset,
path='opencompass/mbpp_pro',
reader_cfg=mbpppro_reader_cfg,
infer_cfg=mbpppro_infer_cfg,
eval_cfg=mbpppro_eval_cfg)
]

View File

@ -0,0 +1,48 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MBPPProDataset, MBPPProEvaluator
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
mbpppro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
mbpppro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
mbpppro_eval_cfg = dict(
evaluator=dict(type=MBPPProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space'),
)
mbpppro_datasets = [
dict(
abbr='mbpp_pro',
type=MBPPProDataset,
path='opencompass/mbpp_pro',
reader_cfg=mbpppro_reader_cfg,
infer_cfg=mbpppro_infer_cfg,
eval_cfg=mbpppro_eval_cfg,
n=5,
k=3)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .multiple_top_ten_gen_f44aaf import multiple_datasets # noqa: F401, F403

View File

@ -32,7 +32,6 @@ multiple_datasets = [
type=MultiplEDataset,
abbr=f'humaneval-multiple-{lang}',
language=lang,
num_repeats=1,
path='opencompass/multipl_e',
tag='humaneval',
reader_cfg=multiple_reader_cfg,
@ -46,7 +45,6 @@ multiple_datasets += [
type=MultiplEDataset,
abbr=f'mbpp-multiple-{lang}',
language=lang,
num_repeats=1,
path='opencompass/multipl_e',
tag='mbpp',
reader_cfg=multiple_reader_cfg,

View File

@ -0,0 +1,58 @@
# Select the 10 most popular programming languages from MultiPL-E to compose the test set.
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MultiplEDataset, MultiplEEvaluator
_TOP_TEN_LANGUAGE_ = ['cpp']
multiple_reader_cfg = dict(input_columns=['language', 'prompt'], output_column='tests')
multiple_infer_cfg = dict(
prompt_template=dict(type=PromptTemplate, template='Based on the provided {language} code snippet, complete the subsequent content. The initial part of the completed code must match the provided code snippet exactly:\n{prompt}'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
multiple_eval_cfg = {
lang: dict(
evaluator=dict(
type=MultiplEEvaluator,
language=lang,
ip_address='https://opencompass-multiple-evaluator.hf.space',
),
pred_role='BOT',
) for lang in _TOP_TEN_LANGUAGE_
}
multiple_datasets = [
dict(
type=MultiplEDataset,
abbr=f'humaneval-multiple-{lang}',
language=lang,
path='opencompass/multipl_e',
tag='humaneval',
reader_cfg=multiple_reader_cfg,
infer_cfg=multiple_infer_cfg,
eval_cfg=multiple_eval_cfg[lang],
n=5,
k=3
) for lang in _TOP_TEN_LANGUAGE_
]
multiple_datasets += [
dict(
type=MultiplEDataset,
abbr=f'mbpp-multiple-{lang}',
language=lang,
path='opencompass/multipl_e',
tag='mbpp',
reader_cfg=multiple_reader_cfg,
infer_cfg=multiple_infer_cfg,
eval_cfg=multiple_eval_cfg[lang],
n=5,
k=3
) for lang in _TOP_TEN_LANGUAGE_
]

View File

@ -0,0 +1,107 @@
import re
from datasets import load_dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
from .base import BaseDataset
def _parse(item, prompt_mode, discipline):
choices = item['choices']
item['q4'] = f'You are an expert in {discipline}.\n'
item['q4'] += item['prompt']['default'] + '\n' + item['question'] + '\n'
label_texts = []
for label_meta, text_meta in zip(choices['label'], choices['text']):
label_texts.append(f'{label_meta}. {text_meta}')
item['q4'] += '\n'.join(label_texts) # noqa: E501, E741, E741
item['prompt_mode'] = prompt_mode
return item
@LOAD_DATASET.register_module()
class SciKnowEvalDataset(BaseDataset):
@staticmethod
def load(path: str, prompt_mode: str, **kwargs):
def capitalize_first_letter(s):
if not s: # 检查字符串是否为空
return s
return s[0].upper() + s[1:]
subset = kwargs['subset']
data_files = {}
test_file = f'data/{capitalize_first_letter(subset)}/'
test_file += f'sciknoweval_{subset}_test.jsonl'
data_files['test'] = test_file
dataset = load_dataset(path, data_files=data_files, split='test')
# dataset = dataset.select(range(20))
if prompt_mode == 'zero-shot':
dataset = dataset.map(
lambda item: _parse(item, prompt_mode, subset),
load_from_cache_file=False)
elif prompt_mode == 'few-shot':
pass # TODO: Implement few-shot prompt
return dataset
class SciKnowEvalEvaluator(BaseEvaluator):
def score(self, predictions, references, test_set):
method = test_set['prompt_mode'][0]
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
correct = 0
count = 0
details = []
for idx, (i, j) in enumerate(zip(predictions, references)):
i = answer_cleansing(method, i, test_set['choices'][idx]['label'],
test_set['answerKey'][idx])
detail = {'pred': i, 'answer': j, 'correct': False}
count += 1
if i == j:
correct += 1
detail['correct'] = True
details.append(detail)
result = {'accuracy': 100 * correct / count, 'details': details}
return result
@TEXT_POSTPROCESSORS.register_module()
def answer_cleansing(
method: str,
prediction: str,
options: list,
label: str,
) -> str:
options_str = r'\b(' + '|'.join(options) + r')\b'
prediction = re.findall(options_str, prediction)
if len(prediction) == 0:
prediction = []
else:
# If there is a "label" and its length is 1,
# process prediction accordingly
if len(label) == 1:
if method == 'few-shot':
answer_flag = True if len(prediction) > 1 else False
# choose the first or last element based on the answer_flag
if answer_flag:
prediction = [prediction[0]]
else:
prediction = [prediction[-1]]
elif method == 'zero-shot':
# choose the first element in list
prediction = [prediction[0]]
else:
raise ValueError('Method is not properly defined ...')
# Remove trailing period if it exists
if prediction[0] and prediction[0].endswith('.'):
prediction[0] = prediction[0][:-1]
return prediction[0]

View File

@ -64,6 +64,7 @@ from .hle import * # noqa: F401, F403
from .huggingface import * # noqa: F401, F403
from .humaneval import * # noqa: F401, F403
from .humaneval_multi import * # noqa: F401, F403
from .humaneval_pro import * # noqa: F401, F403
from .humanevalx import * # noqa: F401, F403
from .hungarian_math import * # noqa: F401, F403
from .IFEval.ifeval import IFEvalDataset, IFEvaluator # noqa: F401, F403
@ -96,6 +97,7 @@ from .math401 import * # noqa: F401, F403
from .math_intern import * # noqa: F401, F403
from .mathbench import * # noqa: F401, F403
from .mbpp import * # noqa: F401, F403
from .mbpp_pro import * # noqa: F401, F403
from .medbench import * # noqa: F401, F403
from .Medbullets import * # noqa: F401, F403
from .MedCalc_Bench import MedCalc_BenchDataset # noqa: F401
@ -136,6 +138,7 @@ from .ruler import * # noqa: F401, F403
from .safety import * # noqa: F401, F403
from .scibench import ScibenchDataset, scibench_postprocess # noqa: F401, F403
from .scicode import * # noqa: F401, F403
from .SciKnowEval import * # noqa: F401, F403
from .simpleqa import * # noqa: F401, F403
from .siqa import * # noqa: F401, F403
from .smolinstruct import * # noqa: F401, F403

View File

@ -9,9 +9,12 @@ from .base import BaseDataset
class HLEDataset(BaseDataset):
@staticmethod
def load(path: str):
def load(path: str, category: str | None = None):
dataset = load_dataset(path)
dataset['test'] = dataset['test'].filter(lambda x: x['image'] == '')
dataset['test'] = dataset['test'].rename_column('question', 'problem')
dataset['train'] = dataset['test']
ds = dataset['test'].filter(lambda x: x['image'] == '')
if category:
ds = ds.filter(lambda x: x['category'] == category)
ds = ds.rename_column('question', 'problem')
dataset['train'] = ds
dataset['test'] = ds
return dataset

View File

@ -0,0 +1,81 @@
# flake8: noqa: E501s
import json
from typing import Dict, List
from datasets import Dataset
from opencompass.openicl.icl_evaluator.code_evaluator import CodeEvaluator
from opencompass.utils import get_data_path
from .base import BaseDataset
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
class HumanevalevalProDataset(BaseDataset):
@staticmethod
def load(path, local_mode=False):
path = get_data_path(path, local_mode=local_mode)
dataset = []
with open(path, encoding='utf-8') as f:
raw_data = json.load(f)
for data in raw_data:
dataset.append(data)
return Dataset.from_list(dataset)
class HumanevalProEvaluator(CodeEvaluator):
def score(self, predictions: List, references: List,
test_set: Dataset) -> Dict:
if len(predictions) != len(references):
return {
'error':
'predictions and references have different '
f'length. len(predictions): {len(predictions)}, '
f'len(references): {len(references)}'
}
test_set = test_set.to_pandas()
# Use the first column as the unique identifier
test_set_origin = test_set.drop_duplicates(subset=test_set.columns[0])
# 1. Prepare data for all test cases
all_test_cases, prompts = [], []
for i in range(len(test_set_origin)):
test_case = test_set_origin.iloc[i]
completion = predictions[i]
# Process code completions
processed_completion = self._process_completions(completion)
code = processed_completion + '\n' + test_case['test_code']
sub_data_dict = {
'name': int(test_case['id']),
'language': self.language,
'code': code,
}
all_test_cases.append(sub_data_dict)
prompt = PROMPT_WRAPPER.format(
raw_problem=test_case['raw_problem'],
new_problem=test_case['new_problem'])
prompts.append(prompt)
# 2. Send all test cases to the evaluation service
success, outputs, error_message = self._evaluate(all_test_cases)
if not success:
return {'error': error_message}
# 3. Process the returned results
return self._process_results(outputs, prompts, len(test_set_origin))

View File

@ -0,0 +1,81 @@
# flake8: noqa: E501
import json
from typing import Dict, List
from datasets import Dataset
from opencompass.openicl.icl_evaluator.code_evaluator import CodeEvaluator
from opencompass.utils import get_data_path
from .base import BaseDataset
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
class MBPPProDataset(BaseDataset):
@staticmethod
def load(path, local_mode=False):
path = get_data_path(path, local_mode=local_mode)
print(path)
dataset = []
with open(path, encoding='utf-8') as f:
for line in f:
dataset.append(json.loads(line.strip()))
return Dataset.from_list(dataset)
class MBPPProEvaluator(CodeEvaluator):
def score(self, predictions: List, references: List,
test_set: Dataset) -> Dict:
if len(predictions) != len(references):
return {
'error':
'predictions and references have different '
f'length. len(predictions): {len(predictions)}, '
f'len(references): {len(references)}'
}
test_set = test_set.to_pandas()
# Use the first column as the unique identifier
test_set_origin = test_set.drop_duplicates(subset=test_set.columns[0])
# 1. Prepare data for all test cases
all_test_cases, prompts = [], []
for i in range(len(test_set_origin)):
test_case = test_set_origin.iloc[i]
completion = predictions[i]
# Process code completions
processed_completion = self._process_completions(completion)
code = processed_completion + '\n' + test_case['test_code']
sub_data_dict = {
'name': int(test_case['id']),
'language': self.language,
'code': code,
}
all_test_cases.append(sub_data_dict)
prompt = PROMPT_WRAPPER.format(
raw_problem=test_case['raw_problem'],
new_problem=test_case['new_problem'])
prompts.append(prompt)
# 2. Send all test cases to the evaluation service
success, outputs, error_message = self._evaluate(all_test_cases)
if not success:
return {'error': error_message}
# 3. Process the returned results
return self._process_results(outputs, prompts, len(test_set_origin))

View File

@ -1,3 +1,4 @@
import difflib
import json
import os.path as osp
@ -28,7 +29,6 @@ class MultiplEDataset(BaseDataset):
@staticmethod
def load(path: str,
language: str,
num_repeats: int = 1,
tag: str = 'humaneval',
local_mode: bool = False):
"""Load dataset for pass k mode.
@ -56,8 +56,7 @@ class MultiplEDataset(BaseDataset):
dataset = []
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
dataset.extend(
[json.loads(line.strip()) for _ in range(num_repeats)])
dataset.append(json.loads(line.strip()))
return Dataset.from_list(dataset)
@ -84,20 +83,56 @@ class MultiplEEvaluator(CodeEvaluator):
min_stop_index = stop_index
return decoded_string[:min_stop_index]
def _process_completions(self, test_case, completions):
def _remove_prefix(self,
prompt: str,
completion: str,
threshold: float = 0.95) -> str:
"""Determine the truncation point in the completion based on the last
line of the prompt, remove all content before that line in the
completion, and return the completion string after removing the prefix.
This is done to convert chatbot-style inference mode to completion
mode.
Args:
prompt (str): The prompt text.
completion (str): The completion text.
threshold (float): Line similarity threshold.
Returns:
str: The completion string after removing the prefix.
"""
prompt_lines = prompt.splitlines()
completion_lines = completion.splitlines()
if not prompt_lines:
return completion
last_prompt_line = prompt_lines[-1]
cut_index = -1
for i, completion_line in enumerate(completion_lines):
similarity = difflib.SequenceMatcher(None, last_prompt_line,
completion_line).ratio()
if similarity >= threshold:
cut_index = i
break
if cut_index != -1:
return '\n'.join(completion_lines[cut_index + 1:])
else:
return completion
def _process_completions(self, test_case, completion):
"""Process completions with a test case.
Args:
test_case: A test case.
completions: A list of completions.
test_case (dict): A test case containing prompt and stop tokens.
completion (str): The generated code completion.
Returns:
A list of processed completions.
str: Processed code completion.
"""
processed_completions = []
for comp in completions:
comp = self._extract_code(comp)
post_comp = self._remove_prefix(test_case['prompt'], comp)
post_comp = self._stop_at_stop_token(post_comp,
test_case['stop_tokens'])
processed_completions.append(post_comp)
return processed_completions
post_comp = self._extract_code(completion)
post_comp = self._remove_prefix(test_case['prompt'], post_comp)
post_comp = self._stop_at_stop_token(post_comp,
test_case['stop_tokens'])
return post_comp

View File

@ -25,7 +25,7 @@ OPENAI_API_BASE = os.path.join(
OPENAISDK_API_BASE = os.environ.get('OPENAI_BASE_URL',
'https://api.openai.com/v1/')
O1_MODEL_LIST = ['o1', 'o3']
O1_MODEL_LIST = ['o1', 'o3', 'o4']
@MODELS.register_module()

View File

@ -1,12 +1,12 @@
# flake8: noqa: E501
import difflib
import os
import re
import tempfile
import time
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from datasets import Dataset
from gradio_client import Client
@ -24,9 +24,9 @@ class CodeEvaluator(BaseEvaluator):
"""
def __init__(self,
language: str,
language: str = 'py',
ip_address: str = 'localhost',
retry: int = 3) -> None:
retry: int = 5) -> None:
"""Initialize the CodeEvaluator.
Args:
@ -71,6 +71,7 @@ class CodeEvaluator(BaseEvaluator):
- output (dict/list/str): Evaluation results or error message
"""
try:
import requests
temp_file_path = None
# Handle file path input
if isinstance(input_data, str):
@ -83,7 +84,15 @@ class CodeEvaluator(BaseEvaluator):
input_data = temp_file_path
# Send to evaluation service
result = self.client.predict(input_data, api_name='/evaluate')
try:
result = self.client.predict(input_data, api_name='/evaluate')
except Exception as e:
# Catch timeout and other exceptions
if 'timed out' in str(e).lower() or 'timeout' in str(
e).lower():
return False, f'Request to code eval service timed out: {e}'
else:
raise
# Process the result
if isinstance(result, (dict, list)):
@ -107,63 +116,16 @@ class CodeEvaluator(BaseEvaluator):
except: # noqa: E722
pass
def _remove_prefix(self,
prompt: str,
completion: str,
threshold: float = 0.95) -> str:
"""Determine the truncation point in the completion based on the last
line of the prompt, remove all content before that line in the
completion, and return the completion string after removing the prefix.
This is done to convert chatbot-style inference mode to completion
mode.
def _process_completions(self, completion: str) -> list:
"""Process code completions to extract the relevant code.
Args:
prompt (str): The prompt text.
completion (str): The completion text.
threshold (float): Line similarity threshold.
completion (str): Code completion string.
Returns:
str: The completion string after removing the prefix.
list: List of processed code completions.
"""
prompt_lines = prompt.splitlines()
completion_lines = completion.splitlines()
if not prompt_lines:
return completion
last_prompt_line = prompt_lines[-1]
cut_index = -1
for i, completion_line in enumerate(completion_lines):
similarity = difflib.SequenceMatcher(None, last_prompt_line,
completion_line).ratio()
if similarity >= threshold:
cut_index = i
break
if cut_index != -1:
return '\n'.join(completion_lines[cut_index + 1:])
else:
return completion
def _process_completions(self, test_case: dict, completions: list) -> list:
"""Process code completion list, which typically involves extracting
code, removing repetitive prefixes caused by chatbot mode, and other
steps to ensure the model-generated code can be compiled successfully.
Args:
test_case (dict): Dictionary containing test case information including:
completions (list): List of code completions generated by the model.
Returns:
list: Processed code completion list.
"""
processed_completions = []
for comp in completions:
comp = self._extract_code(comp)
post_comp = self._remove_prefix(test_case['prompt'], comp)
processed_completions.append(post_comp)
return processed_completions
post_comp = self._extract_code(completion)
return post_comp
def _evaluate(
self, input_data: Union[Dict, List]
@ -186,7 +148,7 @@ class CodeEvaluator(BaseEvaluator):
succeed, output = self._code_eval_service(input_data)
if not succeed:
num_retry += 1
time.sleep(10)
time.sleep(30)
else:
break
@ -195,6 +157,31 @@ class CodeEvaluator(BaseEvaluator):
return True, output, None
def _process_results(self, outputs: List, prompts: List,
total_count: int) -> Dict:
"""Process the evaluation results.
Args:
outputs (list): List of evaluation results for each test case.
prompts (list): List of prompts used for each test case.
total_count (int): Total number of test cases.
Returns:
dict: Processed results including:
- pass@1: Percentage of test cases passed
- details: Detailed results for each test case
"""
details = []
correct = 0
for output, prompt in zip(outputs, prompts):
output['prompt'] = prompt
if output.get('status') == 'OK':
output['correct'] = True
correct += 1
else:
output['correct'] = False
details.append(output)
return {f'pass@1': 100 * correct / total_count, 'details': details}
def score(self, predictions: List, references: List,
test_set: Dataset) -> Dict:
"""Score code generation predictions against references.
@ -221,28 +208,25 @@ class CodeEvaluator(BaseEvaluator):
test_set = test_set.to_pandas()
# Use the first column as the unique identifier
test_set_origin = test_set.drop_duplicates(subset=test_set.columns[0])
num_repeats = int(len(test_set) / len(test_set_origin))
# 1. Prepare data for all test cases
all_test_cases = []
all_test_cases, prompts = [], []
for i in range(len(test_set_origin)):
test_case = test_set_origin.iloc[i]
completions = predictions[i * num_repeats:(i + 1) * num_repeats]
completion = predictions[i]
# Process code completions
processed_completions = self._process_completions(
test_case, completions)
result_dict = {
processed_completion = self._process_completions(
test_case, completion)
code = test_case[
'prompt'] + processed_completion + '\n' + test_case['tests']
sub_data_dict = {
'name': test_case['name'],
'language': test_case['language'],
'prompt': test_case['prompt'],
'tests': test_case['tests'],
'processed_completions': processed_completions,
'completions': completions
'code': code
}
all_test_cases.append(result_dict)
all_test_cases.append(sub_data_dict)
prompts.append(test_case['prompt'])
# 2. Send all test cases to the evaluation service
success, outputs, error_message = self._evaluate(all_test_cases)
@ -250,18 +234,4 @@ class CodeEvaluator(BaseEvaluator):
return {'error': error_message}
# 3. Process the returned results
details = []
correct = 0
for output in outputs:
if output.get('status') == 'OK':
output['correct'] = True
correct += 1
else:
output['correct'] = False
details.append(output)
return {
f'pass@{num_repeats}': 100 * correct / len(test_set_origin),
'details': details
}
return self._process_results(outputs, prompts, len(test_set_origin))

View File

@ -451,6 +451,16 @@ DATASETS_MAPPING = {
"hf_id": "",
"local": "./data/nejmaibench/NEJM_All_Questions_And_Answers.csv",
},
"opencompass/humaneval_pro": {
"ms_id": "",
"hf_id": "",
"local": "./data/humaneval_pro/humaneval_pro.json",
},
"opencompass/mbpp_pro": {
"ms_id": "",
"hf_id": "",
"local": "./data/mbpp_pro/mbpp_pro.json",
},
"opencompass/medbullets": {
"ms_id": "",
"hf_id": "",
@ -813,6 +823,13 @@ DATASETS_URL = {
"url":
"http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/nejmaibench.zip",
"md5": "e6082cae3596b3ebea73e23ba445b99e"
}
},
"humaneval_pro": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/humaneval_pro.zip",
"md5": "4c6fe556e84e905e4f0902d699e46de5",
},
"mbpp_pro": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/mbpp_pro.zip",
"md5": "eac330b8a0a8687f006265c9383503ce",
},
}