[Feat] support adv_glue dataset for adversarial robustness (#205)

* [Feat] support adv_glue dataset for adversarial robustness

* reorg files

* minor fix

* minor fix
This commit is contained in:
Hubert 2023-08-16 18:42:06 +08:00 committed by GitHub
parent d7cb39581a
commit 0fe2366a72
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 461 additions and 0 deletions

View File

@ -0,0 +1,11 @@
from mmengine.config import read_base
with read_base():
from .adv_glue_sst2.adv_glue_sst2_gen import adv_sst2_datasets
from .adv_glue_qqp.adv_glue_qqp_gen import adv_qqp_datasets
from .adv_glue_rte.adv_glue_rte_gen import adv_rte_datasets
from .adv_glue_qnli.adv_glue_qnli_gen import adv_qnli_datasets
from .adv_glue_mnli.adv_glue_mnli_gen import adv_mnli_datasets
from .adv_glue_mnli_mm.adv_glue_mnli_mm_gen import adv_mnli_mm_datasets
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .adv_glue_mnli_gen_bd8ef0 import adv_mnli_datasets # noqa: F401, F403

View File

@ -0,0 +1,42 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import AdvMnliDataset, AccDropEvaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
adv_mnli_reader_cfg = dict(
input_columns=['premise', 'hypothesis'], output_column='label_option')
adv_mnli_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
"""Please identify whether the premise entails the hypothesis. The answer should be exactly 'A. yes', 'B. maybe' or 'C. no'.
premise: {premise}
hypothesis: {hypothesis}
Answer:"""),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
adv_mnli_eval_cfg = dict(
evaluator=dict(type=AccDropEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type=first_option_postprocess, options='ABC'),
)
adv_mnli_datasets = [
dict(
abbr='adv_mnli',
type=AdvMnliDataset,
path='./data/adv_glue/dev_ann.json',
reader_cfg=adv_mnli_reader_cfg,
infer_cfg=adv_mnli_infer_cfg,
eval_cfg=adv_mnli_eval_cfg,
)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .adv_glue_mnli_mm_gen_bd8ef0 import adv_mnli_mm_datasets # noqa: F401, F403

View File

@ -0,0 +1,42 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import AdvMnliMMDataset, AccDropEvaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
adv_mnli_mm_reader_cfg = dict(
input_columns=['premise', 'hypothesis'], output_column='label_option')
adv_mnli_mm_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
"""Please identify whether the premise entails the hypothesis. The answer should be exactly 'A. yes', 'B. maybe' or 'C. no'.
premise: {premise}
hypothesis: {hypothesis}
Answer:"""),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
adv_mnli_mm_eval_cfg = dict(
evaluator=dict(type=AccDropEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type=first_option_postprocess, options='ABC'),
)
adv_mnli_mm_datasets = [
dict(
abbr='adv_mnli_mm',
type=AdvMnliMMDataset,
path='./data/adv_glue/dev_ann.json',
reader_cfg=adv_mnli_mm_reader_cfg,
infer_cfg=adv_mnli_mm_infer_cfg,
eval_cfg=adv_mnli_mm_eval_cfg,
)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .adv_glue_qnli_gen_0b7326 import adv_qnli_datasets # noqa: F401, F403

View File

@ -0,0 +1,42 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import AdvQnliDataset, AccDropEvaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
adv_qnli_reader_cfg = dict(
input_columns=['question', 'sentence'], output_column='label_option')
adv_qnli_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
"""Please identify whether the sentence answers the question. The answer should be exactly 'A. yes' or 'B. no'.
question: {question}
sentence: {sentence}
Answer:"""),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
adv_qnli_eval_cfg = dict(
evaluator=dict(type=AccDropEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type=first_option_postprocess, options='AB'),
)
adv_qnli_datasets = [
dict(
abbr='adv_qnli',
type=AdvQnliDataset,
path='./data/adv_glue/dev_ann.json',
reader_cfg=adv_qnli_reader_cfg,
infer_cfg=adv_qnli_infer_cfg,
eval_cfg=adv_qnli_eval_cfg,
)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .adv_glue_qqp_gen_cdc277 import adv_qqp_datasets # noqa: F401, F403

View File

@ -0,0 +1,42 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import AdvQqpDataset, AccDropEvaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
adv_qqp_reader_cfg = dict(
input_columns=['question1', 'question2'], output_column='label_option')
adv_qqp_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
"""Please identify whether Question 1 has the same meaning as Question 2. The answer should be exactly 'A. no' or 'B. yes'.
Question 1: {question1}
Question 2: {question2}
Answer:"""),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
adv_qqp_eval_cfg = dict(
evaluator=dict(type=AccDropEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type=first_option_postprocess, options='AB'),
)
adv_qqp_datasets = [
dict(
abbr='adv_qqp',
type=AdvQqpDataset,
path='./data/adv_glue/dev_ann.json',
reader_cfg=adv_qqp_reader_cfg,
infer_cfg=adv_qqp_infer_cfg,
eval_cfg=adv_qqp_eval_cfg,
)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .adv_glue_rte_gen_8cc547 import adv_rte_datasets # noqa: F401, F403

View File

@ -0,0 +1,42 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import AdvRteDataset, AccDropEvaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
adv_rte_reader_cfg = dict(
input_columns=['sentence1', 'sentence2'], output_column='label_option')
adv_rte_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
"""Please identify whether the premise entails the hypothesis. The answer should be exactly 'A. yes' or 'B. no'.
hypothesis: {sentence1}
premise: {sentence2}
Answer:"""),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
adv_rte_eval_cfg = dict(
evaluator=dict(type=AccDropEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type=first_option_postprocess, options='AB'),
)
adv_rte_datasets = [
dict(
abbr='adv_rte',
type=AdvRteDataset,
path='./data/adv_glue/dev_ann.json',
reader_cfg=adv_rte_reader_cfg,
infer_cfg=adv_rte_infer_cfg,
eval_cfg=adv_rte_eval_cfg,
)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .adv_glue_sst2_gen_ee8d3b import adv_sst2_datasets # noqa: F401, F403

View File

@ -0,0 +1,41 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import AdvSst2Dataset, AccDropEvaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
adv_sst2_reader_cfg = dict(
input_columns=['sentence'], output_column='label_option')
adv_sst2_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
"""For the given sentence, label the sentiment of the sentence as positive or negative. The answer should be exactly 'A. negative' or 'B. positive'.
sentence: {sentence}
Answer:"""),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
adv_sst2_eval_cfg = dict(
evaluator=dict(type=AccDropEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type=first_option_postprocess, options='AB'),
)
adv_sst2_datasets = [
dict(
abbr='adv_sst2',
type=AdvSst2Dataset,
path='./data/adv_glue/dev_ann.json',
reader_cfg=adv_sst2_reader_cfg,
infer_cfg=adv_sst2_infer_cfg,
eval_cfg=adv_sst2_eval_cfg,
)
]

View File

@ -1,3 +1,4 @@
from .advglue import * # noqa: F401, F403
from .afqmcd import * # noqa: F401, F403 from .afqmcd import * # noqa: F401, F403
from .agieval import * # noqa: F401, F403 from .agieval import * # noqa: F401, F403
from .anli import AnliDataset # noqa: F401, F403 from .anli import AnliDataset # noqa: F401, F403

View File

@ -0,0 +1,174 @@
import json
from typing import List, Union
from datasets import Dataset, concatenate_datasets
from opencompass.openicl.icl_evaluator import AccEvaluator
from .base import BaseDataset
class AdvDataset(BaseDataset):
"""Base adv GLUE dataset. Adv GLUE is built on GLUE dataset. The main
purpose is to eval the accuracy drop on original set and adv set.
Args:
subset (str): The subset task of adv GLUE dataset.
filter_keys (str): The keys to be filtered to create the original
set for comparison.
"""
def __init__(
self,
subset: str,
filter_keys: Union[str, List[str]],
**kwargs,
):
self.subset = subset
if isinstance(filter_keys, str):
filter_keys = [filter_keys]
self.filter_keys = filter_keys
super().__init__(**kwargs)
def aug_with_original_data(self, dataset):
"""Create original dataset and concat to the end."""
# Remove data without original reference
dataset = dataset.filter(
lambda x: any([x[k] for k in self.filter_keys]))
def ori_preprocess(example):
for k in self.filter_keys:
if example[k]:
new_k = k.split('original_')[-1]
example[new_k] = example[k]
example['type'] = 'original'
return example
original_dataset = dataset.map(ori_preprocess)
return concatenate_datasets([dataset, original_dataset])
def load(self, path):
"""Load dataset and aug with original dataset."""
with open(path, 'r') as f:
raw_data = json.load(f)
subset = raw_data[self.subset]
# In case the missing keys in first example causes Dataset
# to ignore them in the following examples when building.
for k in self.filter_keys:
if k not in subset[0]:
subset[0][k] = None
dataset = Dataset.from_list(raw_data[self.subset])
dataset = self.aug_with_original_data(dataset)
def choices_process(example):
example['label_option'] = chr(ord('A') + example['label'])
return example
dataset = dataset.map(choices_process)
return dataset
# label 0 for A. negative
# label 1 for B. positive
class AdvSst2Dataset(AdvDataset):
"""Adv GLUE sst2 dataset."""
def __init__(self, **kwargs):
super().__init__(subset='sst2',
filter_keys='original_sentence',
**kwargs)
# label 0 for not_duplicate, A. no
# label 1 for duplicate, B. yes
class AdvQqpDataset(AdvDataset):
"""Adv GLUE qqp dataset."""
def __init__(self, **kwargs):
super().__init__(
subset='qqp',
filter_keys=['original_question1', 'original_question2'],
**kwargs)
# # label 0 for entailment, A. yes
# # label 1 for neutral, B. maybe
# # label 2 for contradiction, C. no
class AdvMnliDataset(AdvDataset):
"""Adv GLUE mnli dataset."""
def __init__(self, **kwargs):
super().__init__(
subset='mnli',
filter_keys=['original_premise', 'original_hypothesis'],
**kwargs)
# # label 0 for entailment, A. yes
# # label 1 for neutral, B. maybe
# # label 2 for contradiction, C. no
class AdvMnliMMDataset(AdvDataset):
"""Adv GLUE mnli mm dataset."""
def __init__(self, **kwargs):
super().__init__(
subset='mnli-mm',
filter_keys=['original_premise', 'original_hypothesis'],
**kwargs)
# # label 0 for entailment, A. yes
# # label 1 for not entailment, B. no
class AdvQnliDataset(AdvDataset):
"""Adv GLUE qnli dataset."""
def __init__(self, **kwargs):
super().__init__(
subset='qnli',
filter_keys=['original_question', 'original_sentence'],
**kwargs)
# # label 0 for entailment, A. yes
# # label 1 for not entailment, B. no
class AdvRteDataset(AdvDataset):
"""Adv GLUE rte dataset."""
def __init__(self, **kwargs):
super().__init__(
subset='rte',
filter_keys=['original_sentence1', 'original_sentence2'],
**kwargs)
class AccDropEvaluator(AccEvaluator):
"""Eval accuracy drop."""
def __init__(self) -> None:
super().__init__()
def score(self, predictions: List, references: List) -> dict:
"""Calculate scores and accuracy.
Args:
predictions (List): List of probabilities for each class of each
sample.
references (List): List of target labels for each sample.
Returns:
dict: calculated scores.
"""
n = len(predictions)
assert n % 2 == 0, 'Number of examples should be even.'
acc_after = super().score(predictions[:n // 2], references[:n // 2])
acc_before = super().score(predictions[n // 2:], references[n // 2:])
acc_drop = 1 - acc_after['accuracy'] / acc_before['accuracy']
return dict(acc_drop=acc_drop,
acc_after=acc_after['accuracy'],
acc_before=acc_before['accuracy'])