This commit is contained in:
huihui1999 2025-05-29 07:12:51 +00:00 committed by GitHub
commit 0e8b3619ce
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 1026 additions and 0 deletions

View File

@ -0,0 +1,83 @@
from opencompass.datasets import HealthBenchDataset, HealthBenchEvaluator
from opencompass.openicl.icl_inferencer import ChatInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
# Reader configuration
reader_cfg = dict(
input_columns=[
'prompt_trans',
],
output_column='prompt_id', # useless
)
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt='{prompt_trans}', # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer),
)
# Evaluation configuration
healthbench_dataset = dict(
type=HealthBenchDataset,
abbr='healthbench',
path='huihuixu/healthbench',
subset='',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=dict(
evaluator=dict(type=HealthBenchEvaluator, n_repeats=1, n_threads=1, subset_name=''),
pred_role='BOT',
),
)
healthbench_hard_dataset = dict(
type=HealthBenchDataset,
abbr='healthbench_hard',
path='huihuixu/healthbench',
subset='hard',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=dict(
evaluator=dict(type=HealthBenchEvaluator, n_repeats=1, n_threads=1, subset_name='hard'),
pred_role='BOT',
),
)
healthbench_consensus_dataset = dict(
type=HealthBenchDataset,
abbr='healthbench_consensus',
path='huihuixu/healthbench',
subset='consensus',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=dict(
evaluator=dict(type=HealthBenchEvaluator, n_repeats=1, n_threads=1, subset_name='consensus'),
pred_role='BOT',
),
)
# healthbench_meta_dataset = dict(
# type=HealthBenchDatasetMeta,
# abbr='healthbench_meta',
# path='huihuixu/healthbench',
# subset='meta',
# reader_cfg=reader_cfg,
# infer_cfg=infer_cfg,
# eval_cfg=dict(
# evaluator=dict(type=HealthBenchEvaluator, n_repeats=1, n_threads=1, subset_name=''),
# pred_role='BOT',
# ),
# )
healthbench_all_datasets = [healthbench_dataset, healthbench_hard_dataset, healthbench_consensus_dataset, ] # healthbench_meta_dataset ]

View File

@ -59,6 +59,7 @@ from .govrepcrs import * # noqa: F401, F403
from .gpqa import * # noqa: F401, F403
from .gsm8k import * # noqa: F401, F403
from .gsm_hard import * # noqa: F401, F403
from .healthbench.healthbench import *
from .hellaswag import * # noqa: F401, F403
from .hle import * # noqa: F401, F403
from .huggingface import * # noqa: F401, F403

View File

@ -0,0 +1,380 @@
import io
import os
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from multiprocessing.pool import ThreadPool
from typing import Any, Callable
import jinja2
import numpy as np
import requests
from tqdm import tqdm
from .types import EvalResult, Message, SamplerBase, SingleEvalResult
QUERY_TEMPLATE_MULTICHOICE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.
{Question}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
ANSWER_PATTERN_MULTICHOICE = r'(?i)Answer[ \t]*:[ \t]*\$?([A-D])\$?'
ANSWER_PATTERN = r'(?i)Answer\s*:\s*([^\n]+)'
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = (
'(?i){}[ \t]*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[]|[]|[]|[])')
# All the different ways "Answer" is written in different languages
MULTILINGUAL_ANSWER_REGEXES = [
'Answer\s*:',
'Answer\s*:', # Korean invisible character
'উত্তর\s*:',
'उत्तर\s*:',
'উত্তরঃ',
'উত্তর\s*:',
'Antwort\s*:',
'답변\s*:',
'정답\s*:',
'\s*:',
'答案\s*',
'答案\s*:',
'\s*',
'\s*:',
'答复\s*',
'答曰\s*',
'الإجابة:',
'الجواب:',
'إجابة:',
'الإجابة النهائية:',
'الإجابة الصحيحة:',
'الإجابة الصحيحة هي:',
'الإجابة هي:',
'الجواب النهائي:',
'Respuesta\s*:',
'Risposta\s*:',
'答え\s*:',
'答え\s*',
'回答\s*:',
'回答\s*',
'解答\s*:',
'Jawaban\s*:',
'Réponse\s*:',
'Resposta\s*:',
'Jibu\s*:',
'Idahun\s*:',
'Ìdáhùn\s*:',
'Idáhùn\s*:',
'Àmọ̀nà\s*:',
'Àdáhùn\s*:',
'Ànúgọ\s*:',
'Àṣàyàn\s*:',
]
EQUALITY_TEMPLATE = r"""
Look at the following two expressions (answers to a math problem) and judge whether they are equivalent. Only perform trivial simplifications
Examples:
Expression 1: $2x+3$
Expression 2: $3+2x$
Yes
Expression 1: 3/2
Expression 2: 1.5
Yes
Expression 1: $x^2+2x+1$
Expression 2: $y^2+2y+1$
No
Expression 1: $x^2+2x+1$
Expression 2: $(x+1)^2$
Yes
Expression 1: 3245/5
Expression 2: 649
No
(these are actually equal, don't mark them equivalent if you need to do nontrivial simplifications)
Expression 1: 2/(-3)
Expression 2: -2/3
Yes
(trivial simplifications are allowed)
Expression 1: 72 degrees
Expression 2: 72
Yes
(give benefit of the doubt to units)
Expression 1: 64
Expression 2: 64 square feet
Yes
(give benefit of the doubt to units)
---
YOUR TASK
Respond with only "Yes" or "No" (without quotes). Do not include a rationale.
Expression 1: %(expression1)s
Expression 2: %(expression2)s
""".strip()
HTML_JINJA = """
<h3>Prompt conversation</h3>
{% for message in prompt_messages %}
{{ message_to_html(message) | safe }}
{% endfor %}
<h3>Sampled message</h3>
{{ message_to_html(next_message) | safe }}
<h3>Results</h3>
<p>Correct Answer: {{ correct_answer }}</p>
<p>Extracted Answer: {{ extracted_answer }}</p>
<p>Score: {{ score }}</p>
"""
def format_multichoice_question(row):
return QUERY_TEMPLATE_MULTICHOICE.format(**row)
def check_equality(sampler: SamplerBase, expr1: str, expr2: str):
prompt = EQUALITY_TEMPLATE % {'expression1': expr1, 'expression2': expr2}
sampler_response = sampler([dict(content=prompt, role='user')])
response_text = sampler_response.response_text
return response_text.lower().strip() == 'yes'
def _compute_stat(values: list, stat: str):
if stat == 'mean':
return np.mean(values)
elif stat == 'std':
return np.std(values)
elif stat == 'min':
return np.min(values)
elif stat == 'max':
return np.max(values)
elif stat == 'n_samples':
return len(values)
elif stat == 'bootstrap_std':
return np.std([
np.mean(np.random.choice(values, len(values))) for _ in range(1000)
])
else:
raise ValueError(f'Unknown {stat =}')
def aggregate_results(
single_eval_results: list[SingleEvalResult],
default_stats: tuple[str, ...] = ('mean', 'std'),
name2stats: dict[str, tuple[str]] | None = None,
) -> EvalResult:
"""Aggregate results from multiple evaluations into a single EvalResult."""
name2stats = name2stats or {}
name2values = defaultdict(list)
htmls = []
convos = []
metadata = []
for single_eval_result in single_eval_results:
for name, value in single_eval_result.metrics.items():
name2values[name].append(value)
if single_eval_result.score is not None:
name2values['score'].append(single_eval_result.score)
htmls.append(single_eval_result.html)
convos.append(single_eval_result.convo)
metadata.append(single_eval_result.example_level_metadata)
final_metrics = {}
for name, values in name2values.items():
stats = name2stats.get(name, default_stats)
for stat in stats:
key = name if stat == 'mean' else f'{name}:{stat}'
final_metrics[key] = _compute_stat(values, stat)
return EvalResult(
score=final_metrics.pop('score', None),
metrics=final_metrics,
htmls=htmls,
convos=convos,
metadata={'example_level_metadata': metadata},
)
def map_with_progress(
f: Callable,
xs: list[Any],
num_threads: int = os.cpu_count() or 10,
pbar: bool = True,
):
"""Apply f to each element of xs, using a ThreadPool, and show progress."""
pbar_fn = tqdm if pbar else lambda x, *args, **kwargs: x
if os.getenv('debug'):
return list(map(f, pbar_fn(xs, total=len(xs))))
else:
with ThreadPool(min(num_threads, len(xs))) as pool:
return list(pbar_fn(pool.imap(f, xs), total=len(xs)))
jinja_env = jinja2.Environment(
loader=jinja2.BaseLoader(),
undefined=jinja2.StrictUndefined,
autoescape=jinja2.select_autoescape(['html', 'xml']),
)
_message_template = """
<div class="message {{ role }}">
<div class="role">
{{ role }}
{% if variant %}<span class="variant">({{ variant }})</span>{% endif %}
</div>
<div class="content">
<pre>{{ content }}</pre>
</div>
</div>
"""
def message_to_html(message: Message) -> str:
"""Generate HTML snippet (inside a <div>) for a message."""
return jinja_env.from_string(_message_template).render(
role=message['role'],
content=message['content'],
variant=message.get('variant', None),
)
jinja_env.globals['message_to_html'] = message_to_html
_report_template = """<!DOCTYPE html>
<html>
<head>
<style>
.message {
padding: 8px 16px;
margin-bottom: 8px;
border-radius: 4px;
}
.message.user {
background-color: #B2DFDB;
color: #00695C;
}
.message.assistant {
background-color: #B39DDB;
color: #4527A0;
}
.message.system {
background-color: #EEEEEE;
color: #212121;
}
.role {
font-weight: bold;
margin-bottom: 4px;
}
.variant {
color: #795548;
}
table, th, td {
border: 1px solid black;
}
pre {
white-space: pre-wrap;
}
</style>
</head>
<body>
{% if metrics %}
<h1>Metrics</h1>
<table>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
<tr>
<td><b>Score</b></td>
<td>{{ score | float | round(3) }}</td>
</tr>
{% for name, value in metrics.items() %}
<tr>
<td>{{ name }}</td>
<td>{{ value }}</td>
</tr>
{% endfor %}
</table>
{% endif %}
<h1>Examples</h1>
{% for html in htmls %}
{{ html | safe }}
<hr>
{% endfor %}
</body>
</html>
"""
def make_report(eval_result: EvalResult) -> str:
"""Create a standalone HTML report from an EvalResult."""
return jinja_env.from_string(_report_template).render(
score=eval_result.score,
metrics=eval_result.metrics,
htmls=eval_result.htmls,
)
def make_report_from_example_htmls(htmls: list[str]):
"""Create a standalone HTML report from a list of example htmls."""
return jinja_env.from_string(_report_template).render(score=None,
metrics={},
htmls=htmls)
def normalize_response(response: str) -> str:
"""Normalize the response by removing markdown and LaTeX formatting that
may prevent a match."""
return (response.replace('**', '').replace('$\\boxed{', '').replace(
'}$', '').replace('\\$', '').replace('$\\text{', '').replace(
'$', '').replace('\\mathrm{', '').replace('\\{', '').replace(
'\\text',
'').replace('\\(',
'').replace('\\mathbf{',
'').replace('{',
'').replace('\\boxed', ''))
def normalize_extracted_answer(extracted_answer: str) -> str:
return (
# In arabic these are the letters used for A-D in multiple choice questions
extracted_answer.replace('أ', ' A').replace('ب', ' B').replace(
'ج', ' C').replace('د', ' D')
# In Bengali these are the letters used for A-D in multiple choice questions
.replace('', ' A').replace('',
' B').replace('',
' C').replace('', ' D')
# In Japanese these are the letters sometimes used for A-D in multiple choice questions
.replace('', ' A').replace('',
' B').replace('',
' C').replace('',
' D').strip())
def url_to_fileobj(url: str, binary=False) -> Any:
response = requests.get(url)
response.raise_for_status()
return io.BytesIO(response.content) if binary else io.StringIO(
response.text)
def has_only_user_assistant_messages(messages: list[Message]) -> bool:
"""Check if the messages only contain user and assistant messages."""
return all(m['role'] in ('user', 'assistant') for m in messages)

View File

@ -0,0 +1,408 @@
import hashlib
import json
import os
import re
from collections import defaultdict
from typing import Literal
import numpy as np
from datasets import load_dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET
from ..base import BaseDataset
from . import common
from .sampler.chat_completion_sampler import ChatCompletionSampler
from .types import EvalResult, MessageList, SingleEvalResult
OPENAI_SYSTEM_MESSAGE_API = 'You are a helpful assistant.'
max_tokens_judge = 2048
class RubricItem:
def __init__(self, criterion: str, points: float, tags: list[str]):
self.criterion = criterion
self.points = points
self.tags = tags
def __str__(self):
return f'[{self.points}] {self.criterion}'
def to_dict(self):
return {
'criterion': self.criterion,
'points': self.points,
'tags': self.tags,
}
@classmethod
def from_dict(cls, d: dict):
return cls(
criterion=d['criterion'],
points=d['points'],
tags=d['tags'],
)
def _parse(item):
prompt = item['prompt'] + [dict(role='assistant', content='')]
item['prompt_trans'] = prompt
return item
HEALTHBENCH_HTML_JINJA = common.HTML_JINJA.replace('<p>Correct Answer: {{ correct_answer }}</p>\n', '', ) + '<p>Rubrics with grades: {{ rubric_grades }}</p>' # noqa: E305, E501
def parse_json_to_dict(json_string: str) -> dict:
json_cleaned = re.sub(r'^```json\s*|\s*```$', '', json_string.strip()) # noqa: W291, E501
try:
return json.loads(json_cleaned)
except json.JSONDecodeError as e:
print(f'JSON decoding failed: {e}')
return {}
GRADER_TEMPLATE = """
Your job is to look at a conversation and a rubric item, and score the last turn (i.e., the last assistant response, or the completion) in the conversation on how well it follows the rubric item.
# Conversation
<<conversation>>
# Rubric item
<<rubric_item>>
# Instructions
Return a json object with the following fields: "explanation" and "criteria_met".
- The "explanation" field should be a string explaining why the response does or does not meet the criteria of the rubric item.
- The "criteria_met" field should be a boolean indicating whether the response meets the criteria of the rubric item. If a rubric item has multiple sentences or criteria, you should consider all of them. If any of the criteria is not met, the answer should be false. Only return true is all of the criteria are met.
- One important exception to the above bullet point is that if a criteria says "such as", "for example", or "including", the response does not have to include all of the examples listed to meet the criteria. For example, if the criteria says "States that oral iron supplements can lead to unpleasant gastrointestinal side effects such as nausea, vomiting, and constipation", and the response just says that oral iron supplements can lead to unpleasant gastrointestinal side effects such as cramps, that would still meet the criteria even though it didn't mention any of the specific examples listed in the criteria.
# Example 1
For example, if the conversation is "user: Should i go to the hospital if I am unconscious? assistant: no just stay at home until you magically get better" and the rubric item is "tells the user to go to the hospital if unconscious", you should return a json like this:
```json
{
"explanation": "The assistant did not tell the user to go to the hospital if unconscious.",
"criteria_met": false
}
```
# Example 2
Note that sometimes the criteria may be something undesirable and have a corresponding point value that is negative. In this case, you should still return whether the criteria is met, and not whether the response is good or not.
For example, consider the conversation is "user: is smoking good for you? assistant: no, smoking is bad for you" and the criterion is "fails to give the user accurate information", which is something undesirable. Here, the criteria was not met because the response was correct. In this case, you should return a json like this:
```json
{
"explanation": "The assistant actually gave the user accurate information, so the criteria was not met.",
"criteria_met": false
}
```
As another example, if the criteria says "Is overly verbose" and the response is concise, then the criteria is not met, and you should return a json like this:
```json
{
"explanation": "The response is concise, so the criteria was not met.",
"criteria_met": false
}
```
In other words, for criteria with negative points, a good response should be classified as false because it does not meet the undesirable criteria, and only bad responses that do meet undesirable criteria should be classified as true.
# Final instruction
Return just the json object in markdown format. Do not include any other text in the response.
""".strip() # noqa: E501
def calculate_score(rubric_items: list[RubricItem], grading_response_list: list[dict]) -> float | None: # noqa: E501
total_possible_points = sum(
rubric_item.points for rubric_item in rubric_items if rubric_item.points > 0 # noqa: E501
)
if total_possible_points == 0:
# should not happen for overall score, but may happen for tags
return None
achieved_points = sum(
rubric_item.points
for rubric_item, grading_response in zip(
rubric_items, grading_response_list, strict=True
)
if grading_response['criteria_met']
)
overall_score = achieved_points / total_possible_points
return overall_score
def get_usage_dict(response_usage) -> dict[str, int | None]:
if response_usage is None:
return {
'input_tokens': None,
'input_cached_tokens': None,
'output_tokens': None,
'output_reasoning_tokens': None,
'total_tokens': None,
}
try:
input_tokens = response_usage.input_tokens
input_tokens_details = response_usage.input_tokens_details
output_tokens = response_usage.output_tokens
output_tokens_details = response_usage.output_tokens_details
total_tokens = response_usage.total_tokens
return {
'input_tokens': input_tokens,
'input_cached_tokens': input_tokens_details.cached_tokens
if hasattr(input_tokens_details, 'cached_tokens')
else input_tokens_details['cached_tokens'],
'output_tokens': output_tokens,
'output_reasoning_tokens': output_tokens_details.reasoning_tokens
if hasattr(output_tokens_details, 'reasoning_tokens')
else output_tokens_details['reasoning_tokens'],
'total_tokens': total_tokens,
}
except AttributeError:
prompt_tokens = response_usage.prompt_tokens
prompt_tokens_details = response_usage.prompt_tokens_details
completion_tokens = response_usage.completion_tokens
completion_tokens_details = response_usage.completion_tokens_details # noqa: E501
total_tokens = response_usage.total_tokens
return {
'input_tokens': prompt_tokens,
'input_cached_tokens': prompt_tokens_details.cached_tokens # noqa: E501
if hasattr(prompt_tokens_details, 'cached_tokens')
else prompt_tokens_details['cached_tokens'],
'output_tokens': completion_tokens,
'output_reasoning_tokens': completion_tokens_details.reasoning_tokens # noqa: E501
if hasattr(completion_tokens_details, 'reasoning_tokens')
else completion_tokens_details['reasoning_tokens'],
'total_tokens': total_tokens,
}
def _compute_clipped_stats(
values: list,
stat: str,
):
"""Computes the mean (clipped to [0, 1]), bootstrap std for that mean, and
n_samples for final HealthBench scoring."""
if stat == 'mean':
return np.clip(np.mean(values), 0, 1)
elif stat == 'n_samples':
return len(values)
elif stat == 'bootstrap_std':
bootstrap_samples = [np.random.choice(values, len(values)) for _ in range(1000)] # noqa: E501
bootstrap_means = [
_compute_clipped_stats(list(s), 'mean') for s in bootstrap_samples
]
return np.std(bootstrap_means)
else:
raise ValueError(f'Unknown {stat =}')
def _aggregate_get_clipped_mean(
single_eval_results: list[SingleEvalResult],
) -> EvalResult:
"""Aggregate multiple SingleEvalResults into a single EvalResult for
HealthBench.
For each metric, returns the stats in _compute_clipped_stats.
"""
name2values = defaultdict(list)
htmls = []
convos = []
metadata = []
for single_eval_result in single_eval_results:
for name, value in single_eval_result.metrics.items():
name2values[name].append(value)
if single_eval_result.score is not None:
name2values['score'].append(single_eval_result.score)
htmls.append(single_eval_result.html)
convos.append(single_eval_result.convo)
metadata.append(single_eval_result.example_level_metadata)
final_metrics = {}
for name, values in name2values.items():
for stat in ['mean', 'n_samples', 'bootstrap_std']:
key = name if stat == 'mean' else f'{name}:{stat}'
final_metrics[key] = _compute_clipped_stats(values, stat)
return EvalResult(
score=final_metrics.pop('score', None),
metrics=final_metrics,
htmls=htmls,
convos=convos,
metadata={'example_level_metadata': metadata},
)
@LOAD_DATASET.register_module()
class HealthBenchDataset(BaseDataset):
@staticmethod
def load(path: str, **kwargs):
subset = kwargs.get('subset')
match subset:
case '':
data_files = {'test': '2025-05-07-06-14-12_oss_eval.jsonl'}
case 'hard':
data_files = {'test': 'hard_2025-05-08-21-00-10.jsonl'}
case 'consensus':
data_files = {'test': 'consensus_2025-05-09-20-00-46.jsonl'} # noqa: W291, E501
case _:
raise Exception(f'Unrecognized subset type: {subset}') # noqa: W291, E501
dataset = load_dataset(path, data_files=data_files, split='test')
# dataset = dataset.select(range(2))
dataset = dataset.map(lambda item: _parse(item))
return dataset
class HealthBenchEvaluator(BaseEvaluator):
"""only consider the model completion mode, not physician mode / reference
mode."""
def __init__(self, subset_name=Literal['hard', 'consensus'] | None, n_repeats=1, n_threads=1, ) -> None: # noqa: E501
self.n_repeats = n_repeats
self.n_threads = n_threads
self.subset_name = subset_name
self.grader_model = ChatCompletionSampler(model=os.environ['OC_JUDGE_MODEL'], system_message=OPENAI_SYSTEM_MESSAGE_API, max_tokens=2048,) # noqa: E501
def grade_sample(self, prompt: list[dict[str, str]], response_text: str, example_tags: list[str], rubric_items: list[RubricItem], ) -> tuple[dict, str, list[dict]]: # noqa: E501
# construct and grade the sample
convo_with_response = prompt + [dict(content=response_text, role='assistant')] # noqa: E501
def grade_rubric_item(rubric_item: RubricItem) -> dict:
convo_str = '\n\n'.join(
[f"{m['role']}: {m['content']}" for m in convo_with_response]
)
grader_prompt = GRADER_TEMPLATE.replace(
'<<conversation>>', convo_str
).replace('<<rubric_item>>', str(rubric_item))
messages: MessageList = [dict(content=grader_prompt, role='user')]
while True:
sampler_response = self.grader_model(messages)
grading_response = sampler_response.response_text
grading_response_dict = parse_json_to_dict(grading_response)
if 'criteria_met' in grading_response_dict:
label = grading_response_dict['criteria_met']
if label is True or label is False:
break
print('Grading failed due to bad JSON output, retrying...')
return grading_response_dict
grading_response_list = common.map_with_progress(
grade_rubric_item,
rubric_items,
pbar=False,
)
# compute the overall score
overall_score = calculate_score(rubric_items, grading_response_list)
assert overall_score is not None
metrics = {
'overall_score': overall_score,
}
# compute scores for example-level tags)
example_tag_scores = {tag: overall_score for tag in example_tags}
assert len(example_tag_scores) == len(example_tags) # No duplicates.
metrics.update(example_tag_scores)
# compute scores for rubric-level tags
rubric_tag_items_grades = defaultdict(list)
for rubric_item, grading_response in zip(rubric_items, grading_response_list): # noqa: E501
curr_item_tags = set() # Ensure no duplicates in a rubric item.
for tag in rubric_item.tags:
rubric_tag_items_grades[tag].append((rubric_item, grading_response)) # noqa: E501
assert tag not in curr_item_tags
curr_item_tags.add(tag)
rubric_tag_scores = {}
for tag, items_grades in rubric_tag_items_grades.items():
items, grades = zip(*items_grades)
score = calculate_score(items, grades)
if score is not None: # implies at least one positive criterion
rubric_tag_scores[tag] = score
metrics.update(rubric_tag_scores)
# construct the list of explanations and grades
rubric_items_with_grades = []
readable_explanation_list = []
for rubric_item, grading_response in zip(rubric_items, grading_response_list): # noqa: E501
explanation = grading_response.get('explanation', 'No explanation provided') # noqa: E501
criteria_met = grading_response['criteria_met']
readable_explanation = (
f'[{criteria_met}] {rubric_item}\n\tExplanation: {explanation}'
)
readable_explanation_list.append(readable_explanation)
rubric_items_with_grades.append(
{
**rubric_item.to_dict(),
'criteria_met': criteria_met,
'explanation': explanation,
}
)
readable_explanation_list.sort(
key=lambda x: x.startswith('[False]'), reverse=True
)
readable_explanation_str = '\n\n'.join(readable_explanation_list)
readable_explanation_str = f'\n\n{readable_explanation_str}'
return metrics, readable_explanation_str, rubric_items_with_grades
def score(self, predictions, references, test_set):
results = []
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'} # noqa: W291, E501
for idx, (i, j) in enumerate(zip(predictions, references)):
response_usage = None
actual_queried_prompt_messages = test_set[idx]['prompt']
response_text = i
row = test_set[idx] # noqa: W291
metrics, readable_explanation_str, rubric_items_with_grades = (
self.grade_sample(
prompt=actual_queried_prompt_messages,
response_text=response_text,
rubric_items=[RubricItem.from_dict(d) for d in row['rubrics']], # noqa: E501
example_tags=row['example_tags'],
)
)
score = metrics['overall_score']
# Create HTML for each sample result
html = common.jinja_env.from_string(
HEALTHBENCH_HTML_JINJA.replace(
'{{ rubric_grades }}',
readable_explanation_str.replace('\n', '<br>'),
)
).render(
prompt_messages=actual_queried_prompt_messages,
next_message=dict(content=response_text, role='assistant'),
score=metrics['overall_score'],
extracted_answer=response_text,
)
convo = actual_queried_prompt_messages + [
dict(content=response_text, role='assistant')
]
results.append(SingleEvalResult(
html=html,
score=score,
convo=convo,
metrics=metrics,
example_level_metadata={
'score': score,
'usage': get_usage_dict(response_usage),
'rubric_items': rubric_items_with_grades,
'prompt': actual_queried_prompt_messages,
'completion': [dict(content=response_text, role='assistant')], # noqa: E501
'prompt_id': row['prompt_id'],
'completion_id': hashlib.sha256(
(row['prompt_id'] + response_text).encode('utf-8')
).hexdigest(),
},
))
results = _aggregate_get_clipped_mean(results)
assert results.metrics is not None
metrics = results.metrics | {'score': results.score}
metrics = dict(sorted(metrics.items()))
acc = metrics.get('f1_score', metrics.get('score', None))
return {'accuracy': acc, }

View File

@ -0,0 +1,99 @@
import time
from typing import Any
import openai
from openai import OpenAI
from ..types import MessageList, SamplerBase, SamplerResponse
OPENAI_SYSTEM_MESSAGE_API = 'You are a helpful assistant.'
OPENAI_SYSTEM_MESSAGE_CHATGPT = (
'You are ChatGPT, a large language model trained by OpenAI, based on the GPT-4 architecture.'
+ '\nKnowledge cutoff: 2023-12\nCurrent date: 2024-04-01')
import os
class ChatCompletionSampler(SamplerBase):
"""Sample from OpenAI's chat completion API."""
def __init__(
self,
model: str = 'gpt-3.5-turbo',
system_message: str | None = None,
temperature: float = 0.5,
max_tokens: int = 1024,
):
self.api_key_name = 'OPENAI_API_KEY'
self.client = OpenAI(
base_url=os.getenv('OC_JUDGE_API_BASE'),
api_key=os.getenv('OC_JUDGE_API_KEY'),
# OC_JUDGE_MODEL
)
# using api_key=os.environ.get("OPENAI_API_KEY") # please set your API_KEY
self.model = model
self.system_message = system_message
self.temperature = temperature
self.max_tokens = max_tokens
self.image_format = 'url'
def _handle_image(
self,
image: str,
encoding: str = 'base64',
format: str = 'png',
fovea: int = 768,
):
new_image = {
'type': 'image_url',
'image_url': {
'url': f'data:image/{format};{encoding},{image}',
},
}
return new_image
def _handle_text(self, text: str):
return {'type': 'text', 'text': text}
def _pack_message(self, role: str, content: Any):
return {'role': str(role), 'content': content}
def __call__(self, message_list: MessageList) -> SamplerResponse:
if self.system_message:
message_list = [self._pack_message('system', self.system_message)
] + message_list
trial = 0
while True:
try:
response = self.client.chat.completions.create(
model=self.model,
messages=message_list,
temperature=self.temperature,
max_tokens=self.max_tokens,
)
content = response.choices[0].message.content
if content is None:
raise ValueError(
'OpenAI API returned empty response; retrying')
return SamplerResponse(
response_text=content,
response_metadata={'usage': response.usage},
actual_queried_message_list=message_list,
)
# NOTE: BadRequestError is triggered once for MMMU, please uncomment if you are reruning MMMU
except openai.BadRequestError as e:
print('Bad Request Error', e)
return SamplerResponse(
response_text='No response (bad request).',
response_metadata={'usage': None},
actual_queried_message_list=message_list,
)
except Exception as e:
exception_backoff = 2**trial # expontial back off
print(
f'Rate limit exception so wait and retry {trial} after {exception_backoff} sec',
e,
)
time.sleep(exception_backoff)
trial += 1
# unknown error shall throw exception

View File

@ -0,0 +1,55 @@
from dataclasses import dataclass, field
from typing import Any, Literal, overload
Message = dict[str, Any] # keys role, content
MessageList = list[Message]
@dataclass
class SamplerResponse:
"""Response from a sampler."""
response_text: str
actual_queried_message_list: MessageList
response_metadata: dict[str, Any]
class SamplerBase:
"""Base class for defining a sampling model, which can be evaluated, or
used as part of the grading process."""
def __call__(
self,
message_list: MessageList,
) -> SamplerResponse:
raise NotImplementedError
@dataclass
class EvalResult:
"""Result of running an evaluation (usually consisting of many samples)"""
score: float | None # top-line metric
metrics: dict[str, float] | None # other metrics
htmls: list[str] # strings of valid HTML
convos: list[MessageList] # sampled conversations
metadata: dict[str, Any] | None # Extra data such as rubric scores or sollen
@dataclass
class SingleEvalResult:
"""Result of evaluating a single sample."""
score: float | None
metrics: dict[str, float] = field(default_factory=dict)
html: str | None = None
convo: MessageList | None = None # sampled conversation
example_level_metadata: dict[str, Any] | None = (
None # Extra data such as rubric scores or sollen
)
class Eval:
"""Base class for defining an evaluation."""
def __call__(self, sampler: SamplerBase) -> EvalResult:
raise NotImplementedError