mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
Merge branch 'open-compass:main' into main
This commit is contained in:
commit
0b4c7f93ee
36
configs/api_examples/eval_api_nanbeige.py
Normal file
36
configs/api_examples/eval_api_nanbeige.py
Normal file
@ -0,0 +1,36 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.models import Nanbeige
|
||||
from opencompass.partitioners import NaivePartitioner
|
||||
from opencompass.runners.local_api import LocalAPIRunner
|
||||
from opencompass.tasks import OpenICLInferTask
|
||||
|
||||
|
||||
with read_base():
|
||||
from ..summarizers.medium import summarizer
|
||||
from ..datasets.ceval.ceval_gen import ceval_datasets
|
||||
|
||||
datasets = [
|
||||
*ceval_datasets,
|
||||
]
|
||||
|
||||
models = [
|
||||
dict(
|
||||
abbr='nanbeige-plus',
|
||||
type=Nanbeige,
|
||||
path='nanbeige-plus',
|
||||
key="xxxxxx",
|
||||
query_per_second=1,
|
||||
max_out_len=2048,
|
||||
batch_size=8),
|
||||
]
|
||||
|
||||
infer = dict(
|
||||
partitioner=dict(type=NaivePartitioner),
|
||||
runner=dict(
|
||||
type=LocalAPIRunner,
|
||||
max_num_workers=2,
|
||||
concurrent_users=2,
|
||||
task=dict(type=OpenICLInferTask)),
|
||||
)
|
||||
|
||||
work_dir ="./output/nanbeige-plus"
|
@ -1,55 +0,0 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import AgentInferencer
|
||||
from opencompass.datasets import (
|
||||
GSM8KDataset,
|
||||
gsm8k_postprocess,
|
||||
gsm8k_dataset_postprocess,
|
||||
Gsm8kAgentEvaluator,
|
||||
)
|
||||
|
||||
gsm8k_reader_cfg = dict(input_columns=["question"], output_column="answer")
|
||||
|
||||
gsm8k_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
# # ################################### NEW SHOT ###################################
|
||||
dict(role='HUMAN', prompt='Mark\'s basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws. Their opponents score double the 2 pointers but half the 3 pointers and free throws. What\'s the total number of points scored by both teams added together?'),
|
||||
dict(role='BOT', prompt='Tool:PythonInterpreter\nTool Input:def solution():\n mark_pointers_2 = 25 * 2\n mark_pointers_3 = 8 * 3\n mark_free_throws = 10 * 1\n mark_points_scored = mark_pointers_2 + mark_pointers_3 + mark_free_throws\n opponents_pointers_2 = mark_pointers_2 * 2\n opponents_pointers_3 = mark_pointers_3 / 2\n opponents_free_throws = mark_free_throws / 2\n opponents_points_scored = opponents_pointers_2 + opponents_pointers_3 + opponents_free_throws\n total_points_scored = mark_points_scored + opponents_points_scored\n result = total_points_scored\n return result'),
|
||||
dict(role='SYSTEM', prompt='Response:210'),
|
||||
dict(role='BOT', prompt='Thought: According to the response, I got the answer\nFinalAnswer: 210'),
|
||||
|
||||
dict(role='HUMAN', prompt='Bella has two times as many marbles as frisbees. She also has 20 more frisbees than deck cards. If she buys 2/5 times more of each item, what would be the total number of the items she will have if she currently has 60 marbles?'),
|
||||
dict(role='BOT', prompt='Tool:PythonInterpreter\nTool Input:def solution():\n marbles = 60\n num_increased_marbles = marbles * 2 / 5\n num_total_marbles = marbles + num_increased_marbles\n frisbees = marbles / 2\n num_increased_frisbees = frisbees * 2 / 5\n num_total_frisbees = frisbees + num_increased_frisbees\n deck_cards = frisbees - 20\n num_increased_deck_cards = deck_cards * 2 / 5\n num_total_deck_cards = deck_cards + num_increased_deck_cards\n num_total = num_total_marbles + num_total_frisbees + num_total_deck_cards\n result = num_total\n return result'),
|
||||
dict(role='SYSTEM', prompt='Response:140'),
|
||||
dict(role='BOT', prompt='Thought: According to the response, I got the answer\nFinalAnswer: 140'),
|
||||
|
||||
dict(role='HUMAN', prompt='A group of 4 fruit baskets contains 9 apples, 15 oranges, and 14 bananas in the first three baskets and 2 less of each fruit in the fourth basket. How many fruits are there?'),
|
||||
dict(role='BOT', prompt="""Tool:PythonInterpreter\nTool Input:def solution():\n num_fruits_per_first_three_basket = 9 + 15 + 14\n num_fruits_first_three_basket = num_fruits_per_first_three_basket * 3\n num_apple_fourth_basket = 9 - 2\n num_orange_fourth_basket = 15 - 2\n num_banana_fourth_basket = 14 - 2\n num_fruits_fourth_basket = num_apple_fourth_basket + num_orange_fourth_basket + num_banana_fourth_basket\n num_fruits_total = num_fruits_first_three_basket + num_fruits_fourth_basket\n result = num_fruits_total\n return result"""),
|
||||
dict(role='SYSTEM', prompt='Response:146'),
|
||||
dict(role='BOT', prompt='Thought: According to the response, I got the answer\nFinalAnswer: 146'),
|
||||
|
||||
dict(role='HUMAN', prompt='{question}'),
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=AgentInferencer),
|
||||
)
|
||||
|
||||
gsm8k_eval_cfg = dict(
|
||||
evaluator=dict(type=Gsm8kAgentEvaluator),
|
||||
pred_postprocessor=dict(type=gsm8k_postprocess),
|
||||
dataset_postprocessor=dict(type=gsm8k_dataset_postprocess),
|
||||
)
|
||||
|
||||
gsm8k_datasets = [
|
||||
dict(
|
||||
abbr='gsm8k-agent',
|
||||
type=GSM8KDataset,
|
||||
path='./data/gsm8k',
|
||||
reader_cfg=gsm8k_reader_cfg,
|
||||
infer_cfg=gsm8k_infer_cfg,
|
||||
eval_cfg=gsm8k_eval_cfg,
|
||||
)
|
||||
]
|
@ -18,8 +18,8 @@ gsm8k_infer_cfg = dict(
|
||||
# # ################################### NEW SHOT ###################################
|
||||
dict(role='HUMAN', prompt='Mark\'s basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws. Their opponents score double the 2 pointers but half the 3 pointers and free throws. What\'s the total number of points scored by both teams added together?'),
|
||||
dict(role='BOT', prompt='Tool:PythonInterpreter\nTool Input:```python\ndef solution():\n mark_pointers_2 = 25 * 2\n mark_pointers_3 = 8 * 3\n mark_free_throws = 10 * 1\n mark_points_scored = mark_pointers_2 + mark_pointers_3 + mark_free_throws\n opponents_pointers_2 = mark_pointers_2 * 2\n opponents_pointers_3 = mark_pointers_3 / 2\n opponents_free_throws = mark_free_throws / 2\n opponents_points_scored = opponents_pointers_2 + opponents_pointers_3 + opponents_free_throws\n total_points_scored = mark_points_scored + opponents_points_scored\n result = total_points_scored\n return result\n```'),
|
||||
dict(role='SYSTEM', prompt='Response:210'),
|
||||
dict(role='BOT', prompt='Thought: According to the response, I got the answer\nFinalAnswer: 210'),
|
||||
dict(role='SYSTEM', prompt='Response:201'),
|
||||
dict(role='BOT', prompt='Thought: According to the response, I got the answer\nFinalAnswer: 201'),
|
||||
|
||||
dict(role='HUMAN', prompt='Bella has two times as many marbles as frisbees. She also has 20 more frisbees than deck cards. If she buys 2/5 times more of each item, what would be the total number of the items she will have if she currently has 60 marbles?'),
|
||||
dict(role='BOT', prompt='Tool:PythonInterpreter\nTool Input:```python\ndef solution():\n marbles = 60\n num_increased_marbles = marbles * 2 / 5\n num_total_marbles = marbles + num_increased_marbles\n frisbees = marbles / 2\n num_increased_frisbees = frisbees * 2 / 5\n num_total_frisbees = frisbees + num_increased_frisbees\n deck_cards = frisbees - 20\n num_increased_deck_cards = deck_cards * 2 / 5\n num_total_deck_cards = deck_cards + num_increased_deck_cards\n num_total = num_total_marbles + num_total_frisbees + num_total_deck_cards\n result = num_total\n return result\n```'),
|
@ -18,6 +18,7 @@ from .minimax_api import MiniMax # noqa: F401
|
||||
from .mixtral import Mixtral # noqa: F401
|
||||
from .modelscope import ModelScope, ModelScopeCausalLM # noqa: F401, F403
|
||||
from .moonshot_api import MoonShot # noqa: F401
|
||||
from .nanbeige_api import Nanbeige # noqa: F401
|
||||
from .openai_api import OpenAI # noqa: F401
|
||||
from .pangu_api import PanGu # noqa: F401
|
||||
from .qwen_api import Qwen # noqa: F401
|
||||
|
148
opencompass/models/nanbeige_api.py
Normal file
148
opencompass/models/nanbeige_api.py
Normal file
@ -0,0 +1,148 @@
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import requests
|
||||
|
||||
from opencompass.utils.prompt import PromptList
|
||||
|
||||
from .base_api import BaseAPIModel
|
||||
|
||||
PromptType = Union[PromptList, str]
|
||||
|
||||
|
||||
class Nanbeige(BaseAPIModel):
|
||||
"""Model wrapper around Nanbeige.
|
||||
|
||||
Documentations:
|
||||
|
||||
Args:
|
||||
path (str): Model name, e.g. `nanbeige-plus`
|
||||
key (str): Provide API Key
|
||||
url (str): Provided URL
|
||||
query_per_second (int): The maximum queries allowed per second
|
||||
between two consecutive calls of the API. Defaults to 2.
|
||||
max_seq_len (int): Unused here.
|
||||
meta_template (Dict, optional): The model's meta prompt
|
||||
template if needed, in case the requirement of injecting or
|
||||
wrapping of any meta instructions.
|
||||
retry (int): Number of retires if the API call fails. Defaults to 2.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
path: str,
|
||||
key: str,
|
||||
url: str = None,
|
||||
query_per_second: int = 2,
|
||||
max_seq_len: int = 2048,
|
||||
meta_template: Optional[Dict] = None,
|
||||
retry: int = 3):
|
||||
super().__init__(path=path,
|
||||
max_seq_len=max_seq_len,
|
||||
query_per_second=query_per_second,
|
||||
meta_template=meta_template,
|
||||
retry=retry)
|
||||
self.headers = {
|
||||
'Authorization': 'Bearer ' + key,
|
||||
'Content-Type': 'application/json',
|
||||
}
|
||||
self.model = path
|
||||
self.url = url if url is not None \
|
||||
else 'http://stardustlm.zhipin.com/api/gpt/open/chat/send/sync'
|
||||
|
||||
def generate(
|
||||
self,
|
||||
inputs: List[str or PromptList],
|
||||
max_out_len: int = 512,
|
||||
) -> List[str]:
|
||||
"""Generate results given a list of inputs.
|
||||
|
||||
Args:
|
||||
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
|
||||
Returns:
|
||||
List[str]: A list of generated strings.
|
||||
"""
|
||||
with ThreadPoolExecutor() as executor:
|
||||
results = list(
|
||||
executor.map(self._generate, inputs,
|
||||
[max_out_len] * len(inputs)))
|
||||
self.flush()
|
||||
return results
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
input: str or PromptList,
|
||||
max_out_len: int = 512,
|
||||
) -> str:
|
||||
"""Generate results given an input.
|
||||
|
||||
Args:
|
||||
inputs (str or PromptList): A string or PromptDict.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
|
||||
Returns:
|
||||
str: The generated string.
|
||||
"""
|
||||
assert isinstance(input, (str, PromptList))
|
||||
|
||||
if isinstance(input, str):
|
||||
messages = [{'sender_type': 'USER', 'text': input}]
|
||||
else:
|
||||
messages = []
|
||||
for item in input:
|
||||
msg = {'text': item['prompt']}
|
||||
if item['role'] == 'HUMAN':
|
||||
msg['sender_type'] = 'USER'
|
||||
elif item['role'] == 'BOT':
|
||||
msg['sender_type'] = 'BOT'
|
||||
|
||||
messages.append(msg)
|
||||
|
||||
data = {
|
||||
'model': self.model,
|
||||
'messages': messages,
|
||||
}
|
||||
|
||||
max_num_retries = 0
|
||||
while max_num_retries < self.retry:
|
||||
self.acquire()
|
||||
raw_response = requests.request('POST',
|
||||
url=self.url,
|
||||
headers=self.headers,
|
||||
json=data)
|
||||
self.release()
|
||||
|
||||
if raw_response is None:
|
||||
print('Connection error, reconnect.')
|
||||
# if connect error, frequent requests will casuse
|
||||
# continuous unstable network, therefore wait here
|
||||
# to slow down the request
|
||||
self.wait()
|
||||
continue
|
||||
|
||||
if raw_response.status_code != 200:
|
||||
print('请求失败:', raw_response)
|
||||
print('失败信息:', raw_response.text)
|
||||
max_num_retries += 1
|
||||
continue
|
||||
|
||||
response = raw_response.json()
|
||||
if response['stardustCode'] == 0:
|
||||
return response['reply']
|
||||
|
||||
# exceed concurrency limit
|
||||
if response['stardustCode'] == 20035:
|
||||
print(response)
|
||||
time.sleep(2)
|
||||
continue
|
||||
|
||||
print(response)
|
||||
max_num_retries += 1
|
||||
|
||||
raise RuntimeError(raw_response.text)
|
@ -334,6 +334,7 @@ class OpenAIAllesAPIN(OpenAI):
|
||||
path: str,
|
||||
url: str,
|
||||
key: str,
|
||||
temperature: float = 1.0,
|
||||
query_per_second: int = 1,
|
||||
rpm_verbose: bool = False,
|
||||
max_seq_len: int = 2048,
|
||||
@ -346,6 +347,7 @@ class OpenAIAllesAPIN(OpenAI):
|
||||
meta_template=meta_template,
|
||||
retry=retry)
|
||||
self.url = url
|
||||
self.temperature = temperature
|
||||
self.headers = {
|
||||
'alles-apin-token': key,
|
||||
'content-type': 'application/json',
|
||||
@ -387,11 +389,12 @@ class OpenAIAllesAPIN(OpenAI):
|
||||
# model can be response with user and system
|
||||
# when it comes with agent involved.
|
||||
assert msg['role'] in ['user', 'system']
|
||||
|
||||
data = {
|
||||
'model': self.path,
|
||||
'messages': messages,
|
||||
'temperature': temperature
|
||||
}
|
||||
|
||||
for _ in range(self.retry):
|
||||
self.wait()
|
||||
raw_response = requests.post(self.url,
|
||||
|
@ -1,5 +1,4 @@
|
||||
antlr4-python3-runtime==4.11
|
||||
git+ssh://git@gitlab.pjlab.org.cn:1122/openmmlab/bigmodel/ilagent.git@czh/eval_gen
|
||||
ipykernel
|
||||
ipython
|
||||
json5
|
||||
|
Loading…
Reference in New Issue
Block a user