Merge branch 'open-compass:main' into main

This commit is contained in:
yitongYao 2024-01-11 17:57:28 +08:00 committed by GitHub
commit 0b4c7f93ee
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 191 additions and 59 deletions

View File

@ -0,0 +1,36 @@
from mmengine.config import read_base
from opencompass.models import Nanbeige
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='nanbeige-plus',
type=Nanbeige,
path='nanbeige-plus',
key="xxxxxx",
query_per_second=1,
max_out_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir ="./output/nanbeige-plus"

View File

@ -1,55 +0,0 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import AgentInferencer
from opencompass.datasets import (
GSM8KDataset,
gsm8k_postprocess,
gsm8k_dataset_postprocess,
Gsm8kAgentEvaluator,
)
gsm8k_reader_cfg = dict(input_columns=["question"], output_column="answer")
gsm8k_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
# # ################################### NEW SHOT ###################################
dict(role='HUMAN', prompt='Mark\'s basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws. Their opponents score double the 2 pointers but half the 3 pointers and free throws. What\'s the total number of points scored by both teams added together?'),
dict(role='BOT', prompt='Tool:PythonInterpreter\nTool Input:def solution():\n mark_pointers_2 = 25 * 2\n mark_pointers_3 = 8 * 3\n mark_free_throws = 10 * 1\n mark_points_scored = mark_pointers_2 + mark_pointers_3 + mark_free_throws\n opponents_pointers_2 = mark_pointers_2 * 2\n opponents_pointers_3 = mark_pointers_3 / 2\n opponents_free_throws = mark_free_throws / 2\n opponents_points_scored = opponents_pointers_2 + opponents_pointers_3 + opponents_free_throws\n total_points_scored = mark_points_scored + opponents_points_scored\n result = total_points_scored\n return result'),
dict(role='SYSTEM', prompt='Response:210'),
dict(role='BOT', prompt='Thought: According to the response, I got the answer\nFinalAnswer: 210'),
dict(role='HUMAN', prompt='Bella has two times as many marbles as frisbees. She also has 20 more frisbees than deck cards. If she buys 2/5 times more of each item, what would be the total number of the items she will have if she currently has 60 marbles?'),
dict(role='BOT', prompt='Tool:PythonInterpreter\nTool Input:def solution():\n marbles = 60\n num_increased_marbles = marbles * 2 / 5\n num_total_marbles = marbles + num_increased_marbles\n frisbees = marbles / 2\n num_increased_frisbees = frisbees * 2 / 5\n num_total_frisbees = frisbees + num_increased_frisbees\n deck_cards = frisbees - 20\n num_increased_deck_cards = deck_cards * 2 / 5\n num_total_deck_cards = deck_cards + num_increased_deck_cards\n num_total = num_total_marbles + num_total_frisbees + num_total_deck_cards\n result = num_total\n return result'),
dict(role='SYSTEM', prompt='Response:140'),
dict(role='BOT', prompt='Thought: According to the response, I got the answer\nFinalAnswer: 140'),
dict(role='HUMAN', prompt='A group of 4 fruit baskets contains 9 apples, 15 oranges, and 14 bananas in the first three baskets and 2 less of each fruit in the fourth basket. How many fruits are there?'),
dict(role='BOT', prompt="""Tool:PythonInterpreter\nTool Input:def solution():\n num_fruits_per_first_three_basket = 9 + 15 + 14\n num_fruits_first_three_basket = num_fruits_per_first_three_basket * 3\n num_apple_fourth_basket = 9 - 2\n num_orange_fourth_basket = 15 - 2\n num_banana_fourth_basket = 14 - 2\n num_fruits_fourth_basket = num_apple_fourth_basket + num_orange_fourth_basket + num_banana_fourth_basket\n num_fruits_total = num_fruits_first_three_basket + num_fruits_fourth_basket\n result = num_fruits_total\n return result"""),
dict(role='SYSTEM', prompt='Response:146'),
dict(role='BOT', prompt='Thought: According to the response, I got the answer\nFinalAnswer: 146'),
dict(role='HUMAN', prompt='{question}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=AgentInferencer),
)
gsm8k_eval_cfg = dict(
evaluator=dict(type=Gsm8kAgentEvaluator),
pred_postprocessor=dict(type=gsm8k_postprocess),
dataset_postprocessor=dict(type=gsm8k_dataset_postprocess),
)
gsm8k_datasets = [
dict(
abbr='gsm8k-agent',
type=GSM8KDataset,
path='./data/gsm8k',
reader_cfg=gsm8k_reader_cfg,
infer_cfg=gsm8k_infer_cfg,
eval_cfg=gsm8k_eval_cfg,
)
]

View File

@ -18,8 +18,8 @@ gsm8k_infer_cfg = dict(
# # ################################### NEW SHOT ###################################
dict(role='HUMAN', prompt='Mark\'s basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws. Their opponents score double the 2 pointers but half the 3 pointers and free throws. What\'s the total number of points scored by both teams added together?'),
dict(role='BOT', prompt='Tool:PythonInterpreter\nTool Input:```python\ndef solution():\n mark_pointers_2 = 25 * 2\n mark_pointers_3 = 8 * 3\n mark_free_throws = 10 * 1\n mark_points_scored = mark_pointers_2 + mark_pointers_3 + mark_free_throws\n opponents_pointers_2 = mark_pointers_2 * 2\n opponents_pointers_3 = mark_pointers_3 / 2\n opponents_free_throws = mark_free_throws / 2\n opponents_points_scored = opponents_pointers_2 + opponents_pointers_3 + opponents_free_throws\n total_points_scored = mark_points_scored + opponents_points_scored\n result = total_points_scored\n return result\n```'),
dict(role='SYSTEM', prompt='Response:210'),
dict(role='BOT', prompt='Thought: According to the response, I got the answer\nFinalAnswer: 210'),
dict(role='SYSTEM', prompt='Response:201'),
dict(role='BOT', prompt='Thought: According to the response, I got the answer\nFinalAnswer: 201'),
dict(role='HUMAN', prompt='Bella has two times as many marbles as frisbees. She also has 20 more frisbees than deck cards. If she buys 2/5 times more of each item, what would be the total number of the items she will have if she currently has 60 marbles?'),
dict(role='BOT', prompt='Tool:PythonInterpreter\nTool Input:```python\ndef solution():\n marbles = 60\n num_increased_marbles = marbles * 2 / 5\n num_total_marbles = marbles + num_increased_marbles\n frisbees = marbles / 2\n num_increased_frisbees = frisbees * 2 / 5\n num_total_frisbees = frisbees + num_increased_frisbees\n deck_cards = frisbees - 20\n num_increased_deck_cards = deck_cards * 2 / 5\n num_total_deck_cards = deck_cards + num_increased_deck_cards\n num_total = num_total_marbles + num_total_frisbees + num_total_deck_cards\n result = num_total\n return result\n```'),

View File

@ -18,6 +18,7 @@ from .minimax_api import MiniMax # noqa: F401
from .mixtral import Mixtral # noqa: F401
from .modelscope import ModelScope, ModelScopeCausalLM # noqa: F401, F403
from .moonshot_api import MoonShot # noqa: F401
from .nanbeige_api import Nanbeige # noqa: F401
from .openai_api import OpenAI # noqa: F401
from .pangu_api import PanGu # noqa: F401
from .qwen_api import Qwen # noqa: F401

View File

@ -0,0 +1,148 @@
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
import requests
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
PromptType = Union[PromptList, str]
class Nanbeige(BaseAPIModel):
"""Model wrapper around Nanbeige.
Documentations:
Args:
path (str): Model name, e.g. `nanbeige-plus`
key (str): Provide API Key
url (str): Provided URL
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 2.
max_seq_len (int): Unused here.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
retry (int): Number of retires if the API call fails. Defaults to 2.
"""
def __init__(self,
path: str,
key: str,
url: str = None,
query_per_second: int = 2,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
retry: int = 3):
super().__init__(path=path,
max_seq_len=max_seq_len,
query_per_second=query_per_second,
meta_template=meta_template,
retry=retry)
self.headers = {
'Authorization': 'Bearer ' + key,
'Content-Type': 'application/json',
}
self.model = path
self.url = url if url is not None \
else 'http://stardustlm.zhipin.com/api/gpt/open/chat/send/sync'
def generate(
self,
inputs: List[str or PromptList],
max_out_len: int = 512,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str or PromptList]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs)))
self.flush()
return results
def _generate(
self,
input: str or PromptList,
max_out_len: int = 512,
) -> str:
"""Generate results given an input.
Args:
inputs (str or PromptList): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
if isinstance(input, str):
messages = [{'sender_type': 'USER', 'text': input}]
else:
messages = []
for item in input:
msg = {'text': item['prompt']}
if item['role'] == 'HUMAN':
msg['sender_type'] = 'USER'
elif item['role'] == 'BOT':
msg['sender_type'] = 'BOT'
messages.append(msg)
data = {
'model': self.model,
'messages': messages,
}
max_num_retries = 0
while max_num_retries < self.retry:
self.acquire()
raw_response = requests.request('POST',
url=self.url,
headers=self.headers,
json=data)
self.release()
if raw_response is None:
print('Connection error, reconnect.')
# if connect error, frequent requests will casuse
# continuous unstable network, therefore wait here
# to slow down the request
self.wait()
continue
if raw_response.status_code != 200:
print('请求失败:', raw_response)
print('失败信息:', raw_response.text)
max_num_retries += 1
continue
response = raw_response.json()
if response['stardustCode'] == 0:
return response['reply']
# exceed concurrency limit
if response['stardustCode'] == 20035:
print(response)
time.sleep(2)
continue
print(response)
max_num_retries += 1
raise RuntimeError(raw_response.text)

View File

@ -334,6 +334,7 @@ class OpenAIAllesAPIN(OpenAI):
path: str,
url: str,
key: str,
temperature: float = 1.0,
query_per_second: int = 1,
rpm_verbose: bool = False,
max_seq_len: int = 2048,
@ -346,6 +347,7 @@ class OpenAIAllesAPIN(OpenAI):
meta_template=meta_template,
retry=retry)
self.url = url
self.temperature = temperature
self.headers = {
'alles-apin-token': key,
'content-type': 'application/json',
@ -387,11 +389,12 @@ class OpenAIAllesAPIN(OpenAI):
# model can be response with user and system
# when it comes with agent involved.
assert msg['role'] in ['user', 'system']
data = {
'model': self.path,
'messages': messages,
'temperature': temperature
}
for _ in range(self.retry):
self.wait()
raw_response = requests.post(self.url,

View File

@ -1,5 +1,4 @@
antlr4-python3-runtime==4.11
git+ssh://git@gitlab.pjlab.org.cn:1122/openmmlab/bigmodel/ilagent.git@czh/eval_gen
ipykernel
ipython
json5