diff --git a/opencompass/summarizers/needlebench.py b/opencompass/summarizers/needlebench.py index ab9b3dce..0b3283b8 100644 --- a/opencompass/summarizers/needlebench.py +++ b/opencompass/summarizers/needlebench.py @@ -230,7 +230,7 @@ def save_results_to_plots(txt_results_save_path): folder_path = os.path.join(plot_path, dataset_mapping_dict[dataset_abbr]) ensure_directory(folder_path) - save_path = os.path.join(folder_path, f'{model_name}.pdf') + save_path = os.path.join(folder_path, f'{model_name}.png') df = create_model_dataframe(parsed_data, model_name, dataset_abbr, parallel=parallel_flag) @@ -239,25 +239,25 @@ def save_results_to_plots(txt_results_save_path): model_datasets_scores[dataset_abbr] = '{:.02f}'.format(score) overall_dataset_abbrs = multi_dataset_abbrs + origin_dataset_abbrs + parallel_dataset_abbrs - overall_score_pic_path = os.path.join(plot_path, f'{model_name}_overall.pdf') + overall_score_pic_path = os.path.join(plot_path, f'{model_name}_overall.png') merged_df = merge_dataframes(model_name, overall_dataset_abbrs, parsed_data) averaged_df = calculate_elementwise_average(model_name, merged_df) overall_score = visualize(averaged_df, overall_score_pic_path, model_name, 'Overall Score') # Single-Retrieval - single_retrieval_score_pic_path = os.path.join(plot_path, f'{model_name}_single_retrieval_overall.pdf') + single_retrieval_score_pic_path = os.path.join(plot_path, f'{model_name}_single_retrieval_overall.png') single_retrieval_merged_df = merge_dataframes(model_name, origin_dataset_abbrs, parsed_data) single_retrieval_averaged_df = calculate_elementwise_average(model_name, single_retrieval_merged_df) single_retrieval_overall_score = visualize(single_retrieval_averaged_df, single_retrieval_score_pic_path, model_name, 'Single-Retrieval Overall Score') # Multi-Retrieval - multi_retrieval_score_pic_path = os.path.join(plot_path, f'{model_name}_multi_retrieval_overall.pdf') + multi_retrieval_score_pic_path = os.path.join(plot_path, f'{model_name}_multi_retrieval_overall.png') multi_retrieval_merged_df = merge_dataframes(model_name, parallel_dataset_abbrs, parsed_data) multi_retrieval_averaged_df = calculate_elementwise_average(model_name, multi_retrieval_merged_df) multi_retrieval_overall_score = visualize(multi_retrieval_averaged_df, multi_retrieval_score_pic_path, model_name, 'Multi-Retrieval Overall Score') # Multi-Reasoning - multi_reasoning_score_pic_path = os.path.join(plot_path, f'{model_name}_multi_reasoning_overall.pdf') + multi_reasoning_score_pic_path = os.path.join(plot_path, f'{model_name}_multi_reasoning_overall.png') multi_reasoning_merged_df = merge_dataframes(model_name, multi_dataset_abbrs, parsed_data) multi_reasoning_averaged_df = calculate_elementwise_average(model_name, multi_reasoning_merged_df) multi_reasoning_overall_score = visualize(multi_reasoning_averaged_df, multi_reasoning_score_pic_path, model_name, 'Multi-Reasoning Overall Score') @@ -366,7 +366,7 @@ def visualize(df_raw, save_path: str,model_name: str ,dataset_type:str): directory_path, original_filename = os.path.split(save_path) filename_suffix = (title_name+'_'+dataset_name).replace(' ', '_') - new_filename = f'{filename_suffix}.pdf' + new_filename = f'{filename_suffix}.png' new_save_path = os.path.join(directory_path, new_filename)