OpenCompass/configs/eval_ruler_fix_tokenizer.py

39 lines
1.2 KiB
Python
Raw Normal View History

from opencompass.partitioners import (
NaivePartitioner,
NumWorkerPartitioner,
)
from mmengine.config import read_base
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
with read_base():
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat_1m import (
models as internlm2_5_7b_chat_1m,
)
from opencompass.configs.datasets.ruler.ruler_combined_gen import ruler_combined_datasets
from opencompass.configs.summarizers.groups.ruler import ruler_summary_groups
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
models = internlm2_5_7b_chat_1m
work_dir = './outputs/ruler'
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=2),
runner=dict(
type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLInferTask), retry=5
),
)
eval = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=OpenICLEvalTask)),
)
summarizer = dict(
dataset_abbrs=['ruler_4k', 'ruler_8k', 'ruler_16k', 'ruler_32k'],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], []
),
)