mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
97 lines
3.3 KiB
Python
97 lines
3.3 KiB
Python
![]() |
from mmengine.config import read_base
|
||
|
|
||
|
with read_base():
|
||
|
from opencompass.configs.datasets.subjective.hellobench.hellobench import hellobench_datasets
|
||
|
from opencompass.models import HuggingFacewithChatTemplate, OpenAI
|
||
|
from opencompass.partitioners import NaivePartitioner
|
||
|
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
||
|
from opencompass.runners import LocalRunner
|
||
|
from opencompass.tasks import OpenICLInferTask
|
||
|
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
||
|
from opencompass.summarizers import DefaultSubjectiveSummarizer
|
||
|
|
||
|
|
||
|
api_meta_template = dict(
|
||
|
round=[
|
||
|
dict(role='HUMAN', api_role='HUMAN'),
|
||
|
dict(role='BOT', api_role='BOT', generate=True),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
# -------------Inference Stage ----------------------------------------
|
||
|
# For subjective evaluation, we often set do sample for models
|
||
|
# make sure your models' generation parameters are set properly, for example, if you set temperature=0.8, make sure you set all models' temperature to 0.8
|
||
|
models = [
|
||
|
dict(
|
||
|
type=HuggingFacewithChatTemplate,
|
||
|
abbr='glm-4-9b-chat-hf',
|
||
|
path='THUDM/glm-4-9b-chat',
|
||
|
max_out_len=16384,
|
||
|
generation_kwargs=dict(
|
||
|
temperature=0.8,
|
||
|
do_sample=True, #For subjective evaluation, we suggest you do set do_sample when running model inference!
|
||
|
),
|
||
|
model_kwargs=dict(
|
||
|
device_map='auto',
|
||
|
trust_remote_code=True,
|
||
|
),
|
||
|
batch_size=1,
|
||
|
run_cfg=dict(num_gpus=2, num_procs=1),
|
||
|
stop_words=['<|endoftext|>', '<|user|>', '<|observation|>'],
|
||
|
)
|
||
|
]
|
||
|
|
||
|
datasets = [*hellobench_datasets] # add datasets you want
|
||
|
|
||
|
infer = dict(
|
||
|
partitioner=dict(type=NaivePartitioner),
|
||
|
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLInferTask)),
|
||
|
)
|
||
|
# -------------Evalation Stage ----------------------------------------
|
||
|
|
||
|
# ------------- JudgeLLM Configuration
|
||
|
# we recommand to use gpt4o-mini as the judge model
|
||
|
|
||
|
# if you want to use open-source LLMs as judge models, you can uncomment the following code
|
||
|
# judge_models = [
|
||
|
# dict(
|
||
|
# type=HuggingFacewithChatTemplate,
|
||
|
# abbr='glm-4-9b-chat-hf',
|
||
|
# path='THUDM/glm-4-9b-chat',
|
||
|
# max_out_len=16384,
|
||
|
# generation_kwargs=dict(
|
||
|
# temperature=0.8,
|
||
|
# do_sample=True, #For subjective evaluation, we suggest you do set do_sample when running model inference!
|
||
|
# ),
|
||
|
# model_kwargs=dict(
|
||
|
# device_map='auto',
|
||
|
# trust_remote_code=True,
|
||
|
# ),
|
||
|
# batch_size=1,
|
||
|
# run_cfg=dict(num_gpus=2, num_procs=1),
|
||
|
# stop_words=['<|endoftext|>', '<|user|>', '<|observation|>'],
|
||
|
# )
|
||
|
# ]
|
||
|
|
||
|
judge_models = [dict(
|
||
|
abbr='GPT4o',
|
||
|
type=OpenAI,
|
||
|
path='gpt-4o',
|
||
|
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
|
||
|
meta_template=api_meta_template,
|
||
|
query_per_second=16,
|
||
|
max_out_len=4096,
|
||
|
batch_size=1,
|
||
|
temperature=0.8,
|
||
|
seed=42,
|
||
|
)]
|
||
|
|
||
|
## ------------- Evaluation Configuration
|
||
|
eval = dict(
|
||
|
partitioner=dict(type=SubjectiveNaivePartitioner, models=models, judge_models=judge_models,),
|
||
|
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)),
|
||
|
)
|
||
|
|
||
|
summarizer = dict(type=DefaultSubjectiveSummarizer)
|
||
|
work_dir = 'outputs/hellobench/'
|