mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
101 lines
3.1 KiB
Python
101 lines
3.1 KiB
Python
![]() |
import argparse
|
||
|
import copy
|
||
|
import json
|
||
|
import os.path as osp
|
||
|
|
||
|
import mmengine
|
||
|
from mmengine.config import Config, ConfigDict
|
||
|
|
||
|
from opencompass.utils import build_dataset_from_cfg, get_infer_output_path
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
parser = argparse.ArgumentParser(description='Run an evaluation task')
|
||
|
parser.add_argument('config', help='Train config file path')
|
||
|
parser.add_argument('-w',
|
||
|
'--work-dir',
|
||
|
help='Work path, all the outputs will be '
|
||
|
'saved in this path, including the slurm logs, '
|
||
|
'the evaluation results, the summary results, etc.'
|
||
|
'If not specified, the work_dir will be set to '
|
||
|
'./outputs/default.',
|
||
|
default=None,
|
||
|
type=str)
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
class PredictionMerger:
|
||
|
""""""
|
||
|
|
||
|
def __init__(self, cfg: ConfigDict) -> None:
|
||
|
|
||
|
self.cfg = cfg
|
||
|
self.model_cfg = copy.deepcopy(self.cfg['model'])
|
||
|
self.dataset_cfg = copy.deepcopy(self.cfg['dataset'])
|
||
|
self.work_dir = self.cfg.get('work_dir')
|
||
|
|
||
|
def run(self):
|
||
|
filename = get_infer_output_path(
|
||
|
self.model_cfg, self.dataset_cfg,
|
||
|
osp.join(self.work_dir, 'predictions'))
|
||
|
root, ext = osp.splitext(filename)
|
||
|
partial_filename = root + '_0' + ext
|
||
|
|
||
|
if osp.exists(osp.realpath(filename)):
|
||
|
return
|
||
|
|
||
|
if not osp.exists(osp.realpath(partial_filename)):
|
||
|
print(f'{filename} not found')
|
||
|
return
|
||
|
|
||
|
# Load predictions
|
||
|
partial_filenames = []
|
||
|
if osp.exists(osp.realpath(filename)):
|
||
|
preds = mmengine.load(filename)
|
||
|
else:
|
||
|
preds, offset = {}, 0
|
||
|
i = 1
|
||
|
while osp.exists(osp.realpath(partial_filename)):
|
||
|
partial_filenames.append(osp.realpath(partial_filename))
|
||
|
_preds = mmengine.load(partial_filename)
|
||
|
partial_filename = root + f'_{i}' + ext
|
||
|
i += 1
|
||
|
for _o in range(len(_preds)):
|
||
|
preds[str(offset)] = _preds[str(_o)]
|
||
|
offset += 1
|
||
|
|
||
|
dataset = build_dataset_from_cfg(self.dataset_cfg)
|
||
|
if len(preds) != len(dataset.test):
|
||
|
print('length mismatch')
|
||
|
return
|
||
|
|
||
|
print(f'Merge {partial_filenames} to {filename}')
|
||
|
with open(filename, 'w', encoding='utf-8') as f:
|
||
|
json.dump(preds, f, indent=4, ensure_ascii=False)
|
||
|
|
||
|
|
||
|
def dispatch_tasks(cfg):
|
||
|
for model in cfg['models']:
|
||
|
for dataset in cfg['datasets']:
|
||
|
PredictionMerger({
|
||
|
'model': model,
|
||
|
'dataset': dataset,
|
||
|
'work_dir': cfg['work_dir']
|
||
|
}).run()
|
||
|
|
||
|
|
||
|
def main():
|
||
|
args = parse_args()
|
||
|
cfg = Config.fromfile(args.config)
|
||
|
# set work_dir
|
||
|
if args.work_dir is not None:
|
||
|
cfg['work_dir'] = args.work_dir
|
||
|
else:
|
||
|
cfg.setdefault('work_dir', './outputs/default')
|
||
|
dispatch_tasks(cfg)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|