OpenCompass/configs/subjective_infer.py

123 lines
3.8 KiB
Python
Raw Normal View History

2023-10-13 19:50:54 +08:00
from mmengine.config import read_base
with read_base():
from .datasets.subjectivity_cmp.subjectivity_cmp import subjectivity_datasets
from .summarizers.subjective import summarizer
datasets = [*subjectivity_datasets]
from opencompass.models import HuggingFaceCausalLM, HuggingFace, OpenAI
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
_meta_template = dict(
round=[
dict(role="HUMAN", begin='\n<|im_start|>user\n', end='<|im_end|>'),
dict(
role="BOT",
begin="\n<|im_start|>assistant\n",
end='<|im_end|>',
generate=True),
], )
_meta_template2 = dict(
round=[
dict(role='HUMAN', begin='<|User|>:', end='<eoh>\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
], )
models = [
dict(
type=HuggingFace,
abbr='chatglm2-6b-hf',
path='THUDM/chatglm2-6b',
tokenizer_path='THUDM/chatglm2-6b',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
revision='b1502f4f75c71499a3d566b14463edd62620ce9f'),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
revision='b1502f4f75c71499a3d566b14463edd62620ce9f'),
run_cfg=dict(num_gpus=1, num_procs=1),
),
dict(
type=HuggingFaceCausalLM,
abbr='qwen-7b-chat-hf',
path="/mnt/petrelfs/share_data/duanhaodong/Qwen-7B-Chat",
tokenizer_path='/mnt/petrelfs/share_data/duanhaodong/Qwen-7B-Chat',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=False,
),
pad_token_id=151643,
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=1, num_procs=1),
),
dict(
type=HuggingFaceCausalLM,
abbr='internlm-chat-7b-hf',
path="internlm/internlm-chat-7b",
tokenizer_path='internlm/internlm-chat-7b',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
revision="ed5e35564ac836710817c51e8e8d0a5d4ff03102"),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template2,
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
revision="ed5e35564ac836710817c51e8e8d0a5d4ff03102"),
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True)
],
reserved_roles=[
dict(role='SYSTEM', api_role='SYSTEM'),
],
)
eval = dict(
partitioner=dict(
type=SubjectiveNaivePartitioner,
mode='all', # 新参数
),
runner=dict(
type=LocalRunner,
max_num_workers=2, # 支持并行比较
task=dict(
type=SubjectiveEvalTask, # 新 task用来读入一对 model 的输入
judge_cfg=dict(
abbr='GPT4',
type=OpenAI,
path='gpt-4-0613',
key='ENV',
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=2),
)),
)