We now support evaluation of models accelerated by the [LMDeploy](https://github.com/InternLM/lmdeploy). LMDeploy is a toolkit designed for compressing, deploying, and serving LLM. **TurboMind** is an efficient inference engine proposed by LMDeploy. OpenCompass is compatible with TurboMind. We now illustrate how to evaluate a model with the support of TurboMind in OpenCompass.
Please follow the [instructions](https://opencompass.readthedocs.io/en/latest/get_started.html) to install the OpenCompass and prepare the evaluation datasets.
If evaluating the InternLM Chat model, make sure to pass `internlm-chat` as the model name instead of `internlm` when converting the model format. The specific command is:
- If you evaluate theInternLM Chat model, please use configuration file `eval_internlm_chat_turbomind.py`
- If you evaluate the InternLM 7B model, please modify `eval_internlm_turbomind.py` or `eval_internlm_chat_turbomind.py` by commenting out the configuration for the 20B model and enabling the configuration for the 7B model.
- If the InternLM Chat model is requested to be evaluated, please use config file `eval_internlm_chat_turbomind_tis.py`
- In `eval_internlm_turbomind_tis.py`, the configured Triton Inference Server (TIS) address is `tis_addr='0.0.0.0:33337'`. Please modify `tis_addr` to the IP address of the machine where the server is launched.
- If evaluating the InternLM 7B model, please modify the config file, commenting out the configuration for the 20B model and enabling the configuration for the 7B model