2024-05-15 21:51:07 +08:00
|
|
|
# flake8: noqa
|
|
|
|
# yapf: disable
|
|
|
|
import copy
|
|
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
|
|
|
|
from opencompass.models.base import BaseModel
|
|
|
|
from opencompass.utils.logging import get_logger
|
|
|
|
from opencompass.utils.prompt import PromptList
|
|
|
|
|
|
|
|
from .huggingface_above_v4_33 import (_convert_chat_messages,
|
|
|
|
_format_with_fast_chat_template,
|
|
|
|
_get_meta_template,
|
|
|
|
_get_possible_max_seq_len)
|
|
|
|
|
|
|
|
PromptType = Union[PromptList, str]
|
|
|
|
|
|
|
|
|
|
|
|
def valid_str(string, coding='utf-8'):
|
|
|
|
"""decode text according to its encoding type."""
|
|
|
|
invalid_chars = [b'\xef\xbf\xbd']
|
|
|
|
bstr = bytes(string, coding)
|
|
|
|
for invalid_char in invalid_chars:
|
|
|
|
bstr = bstr.replace(invalid_char, b'')
|
|
|
|
ret = bstr.decode(encoding=coding, errors='ignore')
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
class TurboMindModelwithChatTemplate(BaseModel):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
path: str,
|
|
|
|
tokenizer_only: bool = False,
|
|
|
|
engine_config: Dict = {},
|
|
|
|
gen_config: Dict = {},
|
|
|
|
concurrency: int = 8,
|
|
|
|
max_seq_len: int = None,
|
|
|
|
meta_template: Optional[Dict] = None,
|
|
|
|
fastchat_template: Optional[str] = None,
|
|
|
|
stop_words: List[str] = [],
|
|
|
|
):
|
|
|
|
from lmdeploy.messages import TurbomindEngineConfig
|
|
|
|
from lmdeploy.turbomind import TurboMind
|
|
|
|
from lmdeploy.version import version_info
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
self.logger = get_logger()
|
|
|
|
self.path = path
|
|
|
|
self.tokenizer_only = tokenizer_only
|
|
|
|
self.template_parser = _get_meta_template(meta_template)
|
|
|
|
self.max_seq_len = _get_possible_max_seq_len(max_seq_len, path)
|
|
|
|
|
|
|
|
self.origin_tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
|
|
|
if not tokenizer_only:
|
|
|
|
DEFAULT_ENGING_CONFIG = {'session_len': self.max_seq_len}
|
|
|
|
_engine_config = DEFAULT_ENGING_CONFIG.copy()
|
|
|
|
_engine_config.update(engine_config)
|
|
|
|
engine_config = TurbomindEngineConfig(**_engine_config)
|
|
|
|
tm_model = TurboMind.from_pretrained(path, engine_config=engine_config)
|
|
|
|
self.tokenizer = tm_model.tokenizer
|
|
|
|
self.generators = [tm_model.create_instance() for i in range(concurrency)]
|
|
|
|
self.generator_ids = [i + 1 for i in range(concurrency)]
|
|
|
|
self.concurrency = concurrency
|
|
|
|
self.gen_config = gen_config
|
|
|
|
self.version_info = version_info
|
|
|
|
self.fastchat_template = fastchat_template
|
|
|
|
self.stop_words = list(set(stop_words + self._get_potential_stop_words(path)))
|
|
|
|
self.logger.info(f'using stop words: {self.stop_words}')
|
|
|
|
|
|
|
|
def _get_potential_stop_words(self, path: Optional[str]):
|
|
|
|
from transformers import GenerationConfig
|
|
|
|
potential_stop_words = []
|
|
|
|
try:
|
|
|
|
generation_config = GenerationConfig.from_pretrained(path)
|
|
|
|
except:
|
2024-06-28 14:16:34 +08:00
|
|
|
generation_config = None
|
|
|
|
if generation_config and hasattr(generation_config, 'eos_token_id'):
|
|
|
|
if isinstance(generation_config.eos_token_id, int):
|
|
|
|
potential_stop_words.append(self.origin_tokenizer.decode(generation_config.eos_token_id))
|
|
|
|
else:
|
|
|
|
assert isinstance(generation_config.eos_token_id, list)
|
|
|
|
for token_id in generation_config.eos_token_id:
|
|
|
|
potential_stop_words.append(self.origin_tokenizer.decode(token_id))
|
|
|
|
if self.origin_tokenizer.eos_token is not None:
|
|
|
|
potential_stop_words.append(self.origin_tokenizer.eos_token)
|
2024-05-15 21:51:07 +08:00
|
|
|
potential_stop_words = list(set(potential_stop_words))
|
2024-06-28 14:16:34 +08:00
|
|
|
potential_stop_words = [s for s in potential_stop_words if s]
|
2024-05-15 21:51:07 +08:00
|
|
|
return potential_stop_words
|
|
|
|
|
|
|
|
def generate(self,
|
|
|
|
inputs: List[str],
|
|
|
|
max_out_len: int = 512,
|
|
|
|
stopping_criteria: List[str] = [],
|
|
|
|
do_sample: Optional[bool] = None,
|
|
|
|
temperature: int = 1,
|
|
|
|
**kwargs) -> List[str]:
|
|
|
|
"""Generate results given a list of inputs.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
inputs (List[str]): A list of prompts
|
|
|
|
max_out_len (int): The maximum length of the output.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[str]: A list of generated strings.
|
|
|
|
"""
|
|
|
|
assert isinstance(inputs, List), f'List(str) is expected, but got {type(inputs)}'
|
|
|
|
|
|
|
|
messages = _convert_chat_messages(inputs)
|
|
|
|
if self.fastchat_template:
|
|
|
|
messages = _format_with_fast_chat_template(messages, self.fastchat_template)
|
|
|
|
else:
|
|
|
|
messages = [self.origin_tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False) for m in messages]
|
|
|
|
|
|
|
|
# split messages into batches
|
|
|
|
batch_messages = [messages[i:i + self.concurrency] for i in range(0, len(messages), self.concurrency)]
|
|
|
|
|
|
|
|
stop_words = list(set(self.stop_words + stopping_criteria))
|
2024-09-04 19:24:09 +08:00
|
|
|
encode_stop_words = []
|
|
|
|
if stop_words is not None and len(stop_words) > 0:
|
|
|
|
for words in stop_words:
|
|
|
|
encode_stop_words += self.tokenizer.encode(words, add_bos=False)
|
|
|
|
|
2024-05-15 21:51:07 +08:00
|
|
|
DEFAULT_GEN_CONFIG = {
|
|
|
|
'max_new_tokens': max_out_len,
|
|
|
|
'min_new_tokens': 1,
|
|
|
|
'top_k': 1,
|
2024-09-04 19:24:09 +08:00
|
|
|
'stop_words': encode_stop_words,
|
2024-05-15 21:51:07 +08:00
|
|
|
}
|
|
|
|
gen_config = copy.deepcopy(DEFAULT_GEN_CONFIG)
|
|
|
|
gen_config.update(self.gen_config)
|
|
|
|
if do_sample:
|
|
|
|
gen_config['top_k'] = 1000
|
|
|
|
gen_config['temperature'] = temperature
|
2024-06-28 14:16:34 +08:00
|
|
|
|
2024-09-04 19:24:09 +08:00
|
|
|
from lmdeploy.messages import GenerationConfig
|
2024-05-15 21:51:07 +08:00
|
|
|
gen_config = GenerationConfig(**gen_config)
|
|
|
|
|
|
|
|
results = []
|
|
|
|
for batch_message in batch_messages:
|
|
|
|
n = len(batch_message)
|
|
|
|
with ThreadPoolExecutor() as executor:
|
|
|
|
_results = list(
|
|
|
|
executor.map(
|
|
|
|
self._generate,
|
|
|
|
self.generators[:n],
|
|
|
|
self.generator_ids[:n],
|
|
|
|
batch_message,
|
|
|
|
[gen_config] * n,
|
|
|
|
))
|
|
|
|
results += _results
|
|
|
|
|
|
|
|
for s in stop_words:
|
|
|
|
results = [r.split(s)[0] for r in results]
|
|
|
|
return results
|
|
|
|
|
|
|
|
def _generate(self,
|
|
|
|
generator,
|
|
|
|
session_id,
|
|
|
|
prompt: PromptType,
|
|
|
|
gen_config=None) -> str:
|
|
|
|
"""Generate results given a list of inputs.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt (PromptType): A string or PromptDict.
|
|
|
|
The PromptDict should be organized in OpenCompass'
|
|
|
|
API format.
|
2024-09-04 19:24:09 +08:00
|
|
|
gen_config (GenerationConfig, optional): Generation
|
2024-05-15 21:51:07 +08:00
|
|
|
config to set arguments like top_k, top_p, temperature.
|
|
|
|
Returns:
|
|
|
|
str: The generated string.
|
|
|
|
"""
|
|
|
|
assert type(prompt) is str, 'We only support string for TurboMind Python API'
|
|
|
|
|
2024-06-28 14:16:34 +08:00
|
|
|
input_ids = self.tokenizer.encode(prompt, add_bos=False)
|
2024-05-15 21:51:07 +08:00
|
|
|
for outputs in generator.stream_infer(session_id=session_id,
|
|
|
|
input_ids=[input_ids],
|
|
|
|
gen_config=gen_config,
|
|
|
|
sequence_start=True,
|
|
|
|
sequence_end=True,
|
|
|
|
step=0,
|
|
|
|
stream_output=False):
|
|
|
|
if self.version_info >= (0, 4, 0):
|
|
|
|
output_ids = outputs.token_ids
|
|
|
|
else:
|
|
|
|
_, output_ids, _ = outputs
|
|
|
|
response = self.tokenizer.decode(output_ids)
|
|
|
|
response = valid_str(response)
|
|
|
|
return response
|
|
|
|
|
|
|
|
def get_token_len(self, prompt: str) -> int:
|
|
|
|
"""Get lengths of the tokenized strings.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt (str): Input string.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
int: Length of the input tokens
|
|
|
|
"""
|
|
|
|
m = _convert_chat_messages([prompt])[0]
|
|
|
|
t = self.origin_tokenizer.apply_chat_template(m, add_generation_prompt=True, return_dict=True)
|
|
|
|
return len(t['input_ids'])
|