mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
109 lines
3.5 KiB
Python
109 lines
3.5 KiB
Python
![]() |
# flake8: noqa: E501
|
||
|
import json
|
||
|
import os.path as osp
|
||
|
from collections import defaultdict
|
||
|
|
||
|
from datasets import Dataset, DatasetDict
|
||
|
|
||
|
from opencompass.registry import DICT_POSTPROCESSORS, LOAD_DATASET
|
||
|
from opencompass.utils import get_data_path
|
||
|
|
||
|
from ..base import BaseDataset
|
||
|
from .utils import get_judgeanswer_and_reference
|
||
|
|
||
|
|
||
|
@LOAD_DATASET.register_module()
|
||
|
class AlpacaEvalDataset(BaseDataset):
|
||
|
|
||
|
def load(self, path: str, name: str, *args, **kwargs):
|
||
|
path = get_data_path(path, local_mode=True)
|
||
|
filename = osp.join(path, f'{name}.json')
|
||
|
dataset = DatasetDict()
|
||
|
raw_data = []
|
||
|
with open(filename, 'r', encoding='utf-8') as f:
|
||
|
json_data = json.load(f)
|
||
|
for problem in json_data:
|
||
|
question = problem['question']
|
||
|
capability = problem['capability']
|
||
|
others = problem['others']
|
||
|
raw_data.append({
|
||
|
'question': question,
|
||
|
'capability': capability,
|
||
|
'others': others,
|
||
|
'judge': {
|
||
|
'capability': capability,
|
||
|
'question': question
|
||
|
}
|
||
|
})
|
||
|
dataset = Dataset.from_list(raw_data)
|
||
|
return dataset
|
||
|
|
||
|
|
||
|
def post_process_alpacav2(completion: str):
|
||
|
r"""Parse a completion that contains 'm' or 'M' and returns the rank of the model1.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> ranking_parser("m")
|
||
|
1
|
||
|
>>> ranking_parser("M")
|
||
|
2
|
||
|
>>> ranking_parser("s")
|
||
|
None
|
||
|
"""
|
||
|
completion = completion['prediction']
|
||
|
try:
|
||
|
if completion[0] == 'm':
|
||
|
return {'rank': 1}
|
||
|
elif completion[0] == 'M':
|
||
|
return {'rank': 2}
|
||
|
else:
|
||
|
return None
|
||
|
except Exception as e:
|
||
|
return None
|
||
|
|
||
|
|
||
|
@DICT_POSTPROCESSORS.register_module('alpacaeval')
|
||
|
def alpacaeval_postprocess(output: dict, output_path: str) -> dict:
|
||
|
judged_answers, references = get_judgeanswer_and_reference(
|
||
|
output, output_path, post_process_alpacav2)
|
||
|
|
||
|
if len(judged_answers) == 0:
|
||
|
scores = None
|
||
|
|
||
|
win_model1, win_model2, categories = defaultdict(float), defaultdict(
|
||
|
float), defaultdict(float)
|
||
|
model1, model2 = references[0]['answer1'], references[0]['answer2']
|
||
|
for prediction, reference in zip(judged_answers, references):
|
||
|
categories['total'] += 1
|
||
|
categories[reference['capability']] += 1
|
||
|
if prediction['rank'] == 1:
|
||
|
if reference['answer1'] == model1:
|
||
|
win_model1[reference['capability']] += 1
|
||
|
win_model1['total'] += 1
|
||
|
else:
|
||
|
win_model2[reference['capability']] += 1
|
||
|
win_model2['total'] += 1
|
||
|
else:
|
||
|
if reference['answer1'] == model1:
|
||
|
win_model2[reference['capability']] += 1
|
||
|
win_model2['total'] += 1
|
||
|
else:
|
||
|
win_model1[reference['capability']] += 1
|
||
|
win_model1['total'] += 1
|
||
|
for capability in categories:
|
||
|
if capability not in win_model1:
|
||
|
win_model1[capability] = 0.0
|
||
|
else:
|
||
|
win_model1[capability] = round(
|
||
|
(win_model1[capability] / categories[capability]) * 100, 2)
|
||
|
if capability not in win_model2:
|
||
|
win_model2[capability] = 0.0
|
||
|
else:
|
||
|
win_model2[capability] = round(
|
||
|
(win_model2[capability] / categories[capability]) * 100, 2)
|
||
|
|
||
|
results = win_model2
|
||
|
results['details'] = output
|
||
|
return results
|