OpenCompass/opencompass/datasets/subjective/alpacaeval.py

109 lines
3.5 KiB
Python
Raw Normal View History

# flake8: noqa: E501
import json
import os.path as osp
from collections import defaultdict
from datasets import Dataset, DatasetDict
from opencompass.registry import DICT_POSTPROCESSORS, LOAD_DATASET
from opencompass.utils import get_data_path
from ..base import BaseDataset
from .utils import get_judgeanswer_and_reference
@LOAD_DATASET.register_module()
class AlpacaEvalDataset(BaseDataset):
def load(self, path: str, name: str, *args, **kwargs):
path = get_data_path(path, local_mode=True)
filename = osp.join(path, f'{name}.json')
dataset = DatasetDict()
raw_data = []
with open(filename, 'r', encoding='utf-8') as f:
json_data = json.load(f)
for problem in json_data:
question = problem['question']
capability = problem['capability']
others = problem['others']
raw_data.append({
'question': question,
'capability': capability,
'others': others,
'judge': {
'capability': capability,
'question': question
}
})
dataset = Dataset.from_list(raw_data)
return dataset
def post_process_alpacav2(completion: str):
r"""Parse a completion that contains 'm' or 'M' and returns the rank of the model1.
Examples
--------
>>> ranking_parser("m")
1
>>> ranking_parser("M")
2
>>> ranking_parser("s")
None
"""
completion = completion['prediction']
try:
if completion[0] == 'm':
return {'rank': 1}
elif completion[0] == 'M':
return {'rank': 2}
else:
return None
except Exception as e:
return None
@DICT_POSTPROCESSORS.register_module('alpacaeval')
def alpacaeval_postprocess(output: dict, output_path: str) -> dict:
judged_answers, references = get_judgeanswer_and_reference(
output, output_path, post_process_alpacav2)
if len(judged_answers) == 0:
scores = None
win_model1, win_model2, categories = defaultdict(float), defaultdict(
float), defaultdict(float)
model1, model2 = references[0]['answer1'], references[0]['answer2']
for prediction, reference in zip(judged_answers, references):
categories['total'] += 1
categories[reference['capability']] += 1
if prediction['rank'] == 1:
if reference['answer1'] == model1:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
else:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
else:
if reference['answer1'] == model1:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
else:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
for capability in categories:
if capability not in win_model1:
win_model1[capability] = 0.0
else:
win_model1[capability] = round(
(win_model1[capability] / categories[capability]) * 100, 2)
if capability not in win_model2:
win_model2[capability] = 0.0
else:
win_model2[capability] = round(
(win_model2[capability] / categories[capability]) * 100, 2)
results = win_model2
results['details'] = output
return results