OpenCompass/configs/datasets/subjective/judgerbench/judgerbench.py

55 lines
1.6 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets.subjective import JudgerBenchDataset, JudgerBenchEvaluator
from mmengine.config import read_base
subjective_reader_cfg = dict(
input_columns=['judge_prompt'],
output_column='judge',
)
subjective_all_sets = [
'judgerbench_A_cn', 'judgerbench_A_en', 'judgerbench_B'
]
judgerbench_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{judge_prompt}'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=4096),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=JudgerBenchEvaluator,
),
2024-05-14 15:35:58 +08:00
pred_role='BOT',
)
judgerbench_datasets.append(
dict(
2024-05-14 15:35:58 +08:00
abbr=f'{_name}',
type=JudgerBenchDataset,
path='./data/subjective/judgerbench',
name=_name,
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg,
))
# ds1000_eval_cfg = dict(
# evaluator=dict(type=DS1000Evaluator),
# pred_role='BOT',
# pred_postprocessor=dict(type=ds1000_postprocess),
# )