mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
109 lines
4.1 KiB
Markdown
109 lines
4.1 KiB
Markdown
![]() |
# Multi-modality Evaluation
|
||
|
|
||
|
We support several multi-modality datasets, such as [MMBench](https://opencompass.org.cn/MMBench), [SEED-Bench](https://github.com/AILab-CVC/SEED-Bench) to evaluate multi-modality models. Before starting, please make sure you have downloaded the evaluation datasets following the official instruction.
|
||
|
|
||
|
## Start Evaluation
|
||
|
|
||
|
Before evaluation, you could modify `tasks.py` or create a new file like `tasks.py` to evaluate your own model.
|
||
|
|
||
|
Generally to run the evaluation, we use command below.
|
||
|
|
||
|
### Slurm
|
||
|
|
||
|
```sh
|
||
|
cd $root
|
||
|
python run.py configs/multimodal/tasks.py --mm-eval --slurm -p $PARTITION
|
||
|
```
|
||
|
|
||
|
### PyTorch
|
||
|
|
||
|
```sh
|
||
|
cd $root
|
||
|
python run.py configs/multimodal/tasks.py --mm-eval
|
||
|
```
|
||
|
|
||
|
## Configuration File
|
||
|
|
||
|
We adapt the new config format of [MMEngine](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta).
|
||
|
|
||
|
### Task File
|
||
|
|
||
|
Here is the example config of `configs/multimodal/tasks.py`.
|
||
|
|
||
|
```python
|
||
|
from mmengine.config import read_base
|
||
|
|
||
|
with read_base():
|
||
|
from .minigpt_4.minigpt_4_7b_mmbench import (minigpt_4_mmbench_dataloader,
|
||
|
minigpt_4_mmbench_evaluator,
|
||
|
minigpt_4_mmbench_load_from,
|
||
|
minigpt_4_mmbench_model)
|
||
|
|
||
|
models = [minigpt_4_mmbench_model]
|
||
|
datasets = [minigpt_4_mmbench_dataloader]
|
||
|
evaluators = [minigpt_4_mmbench_evaluator]
|
||
|
load_froms = [minigpt_4_mmbench_load_from]
|
||
|
|
||
|
# set the platform and resources
|
||
|
num_gpus = 8
|
||
|
num_procs = 8
|
||
|
launcher = 'pytorch'
|
||
|
```
|
||
|
|
||
|
### Details of Task
|
||
|
|
||
|
Here is an example of MiniGPT-4 with MMBench and we provide some comments for
|
||
|
users to understand the meaning of the keys in config.
|
||
|
|
||
|
```python
|
||
|
from opencompass.multimodal.models.minigpt_4 import (
|
||
|
MiniGPT4MMBenchPromptConstructor, MiniGPT4MMBenchPostProcessor)
|
||
|
|
||
|
# dataloader settings
|
||
|
# Here we use Transforms in MMPreTrain to process images
|
||
|
val_pipeline = [
|
||
|
dict(type='mmpretrain.torchvision/Resize',
|
||
|
size=(224, 224),
|
||
|
interpolation=3),
|
||
|
dict(type='mmpretrain.torchvision/ToTensor'),
|
||
|
dict(type='mmpretrain.torchvision/Normalize',
|
||
|
mean=(0.48145466, 0.4578275, 0.40821073),
|
||
|
std=(0.26862954, 0.26130258, 0.27577711)),
|
||
|
dict(type='mmpretrain.PackInputs',
|
||
|
algorithm_keys=[
|
||
|
'question', 'category', 'l2-category', 'context', 'index',
|
||
|
'options_dict', 'options', 'split'
|
||
|
])
|
||
|
]
|
||
|
|
||
|
# The defined MMBench datasets to load evaluation data
|
||
|
dataset = dict(type='opencompass.MMBenchDataset',
|
||
|
data_file='data/mmbench/mmbench_test_20230712.tsv',
|
||
|
pipeline=val_pipeline)
|
||
|
|
||
|
minigpt_4_mmbench_dataloader = dict(batch_size=1,
|
||
|
num_workers=4,
|
||
|
dataset=dataset,
|
||
|
collate_fn=dict(type='pseudo_collate'),
|
||
|
sampler=dict(type='DefaultSampler',
|
||
|
shuffle=False))
|
||
|
|
||
|
# model settings
|
||
|
minigpt_4_mmbench_model = dict(
|
||
|
type='minigpt-4', # the test multomodal algorithm, the type can be found in `opencompass/multimodal/models/minigpt_4.py`, `@MM_MODELS.register_module('minigpt-4')`
|
||
|
low_resource=False,
|
||
|
llama_model='/path/to/vicuna-7b/', # the model path of LLM
|
||
|
prompt_constructor=dict(type=MiniGPT4MMBenchPromptConstructor, # the PromptConstructor to construct the prompt
|
||
|
image_prompt='###Human: <Img><ImageHere></Img>',
|
||
|
reply_prompt='###Assistant:'),
|
||
|
post_processor=dict(type=MiniGPT4MMBenchPostProcessor)) # the PostProcessor to deal with the output, process it into the required format
|
||
|
|
||
|
# evaluation settings
|
||
|
minigpt_4_mmbench_evaluator = [
|
||
|
dict(type='opencompass.DumpResults', # the evaluator will dump results to save_path, code can be found in `opencompass/metrics/dump_results.py`
|
||
|
save_path='work_dirs/minigpt-4-7b-mmbench.xlsx')
|
||
|
]
|
||
|
|
||
|
minigpt_4_mmbench_load_from = '/path/to/prerained_minigpt4_7b.pth' # the model path of linear layer between Q-Former and LLM in MiniGPT-4
|
||
|
```
|