mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
309 lines
11 KiB
Python
309 lines
11 KiB
Python
![]() |
# flake8: noqa: E501
|
|||
|
import json
|
|||
|
import os
|
|||
|
import random
|
|||
|
|
|||
|
import tiktoken
|
|||
|
from datasets import Dataset
|
|||
|
|
|||
|
from opencompass.datasets.base import BaseDataset
|
|||
|
from opencompass.openicl import BaseEvaluator
|
|||
|
from opencompass.registry import LOAD_DATASET
|
|||
|
from opencompass.utils import get_data_path
|
|||
|
|
|||
|
|
|||
|
def get_unique_entries(
|
|||
|
file_path,
|
|||
|
n,
|
|||
|
language,
|
|||
|
unique_arg1=False,
|
|||
|
unique_arg2=False,
|
|||
|
unique_combination=False,
|
|||
|
):
|
|||
|
seen_arg1 = set()
|
|||
|
seen_arg2 = set()
|
|||
|
seen_combinations = set()
|
|||
|
results = []
|
|||
|
|
|||
|
with open(file_path, 'r', encoding='utf-8') as file:
|
|||
|
lines = file.readlines()
|
|||
|
random.shuffle(lines)
|
|||
|
|
|||
|
for line in lines:
|
|||
|
try:
|
|||
|
entry = json.loads(line.strip())
|
|||
|
except json.JSONDecodeError:
|
|||
|
continue
|
|||
|
|
|||
|
if entry.get('language') != language:
|
|||
|
continue
|
|||
|
|
|||
|
key1 = entry.get('arg1', '') if unique_arg1 else ''
|
|||
|
key2 = entry.get('arg2', '') if unique_arg2 else ''
|
|||
|
combination = (key1, key2) if unique_combination else ''
|
|||
|
|
|||
|
if ((key1 not in seen_arg1 or not unique_arg1) # noqa: E501
|
|||
|
and (key2 not in seen_arg2 or not unique_arg2)
|
|||
|
and # noqa: E501
|
|||
|
(combination not in seen_combinations
|
|||
|
or not unique_combination)): # noqa: E501
|
|||
|
seen_arg1.add(key1)
|
|||
|
seen_arg2.add(key2)
|
|||
|
seen_combinations.add(combination)
|
|||
|
results.append(entry)
|
|||
|
|
|||
|
if len(results) == n:
|
|||
|
break
|
|||
|
|
|||
|
return results
|
|||
|
|
|||
|
|
|||
|
@LOAD_DATASET.register_module()
|
|||
|
class NeedleBenchParallelDataset(BaseDataset):
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def load(
|
|||
|
path: str,
|
|||
|
needle_file_name: str,
|
|||
|
length: int,
|
|||
|
depths: list[int],
|
|||
|
tokenizer_model: str,
|
|||
|
file_list: list[str],
|
|||
|
num_repeats_per_file: int,
|
|||
|
length_buffer: int,
|
|||
|
language: str,
|
|||
|
quesiton_position: str = 'End',
|
|||
|
):
|
|||
|
data = {'prompt': [], 'answer': []}
|
|||
|
tokenizer = tiktoken.encoding_for_model(tokenizer_model)
|
|||
|
|
|||
|
file_names = [
|
|||
|
'PaulGrahamEssays.jsonl',
|
|||
|
'multi_needle_reasoning_en.json',
|
|||
|
'multi_needle_reasoning_zh.json',
|
|||
|
'zh_finance.jsonl',
|
|||
|
'zh_game.jsonl',
|
|||
|
'zh_general.jsonl',
|
|||
|
'zh_government.jsonl',
|
|||
|
'zh_movie.jsonl',
|
|||
|
'zh_tech.jsonl',
|
|||
|
]
|
|||
|
path = get_data_path(path)
|
|||
|
if os.environ.get('DATASET_SOURCE') == 'HF':
|
|||
|
from huggingface_hub import snapshot_download
|
|||
|
|
|||
|
path = snapshot_download(repo_id=path, repo_type='dataset')
|
|||
|
needle_file_path = os.path.join(path, needle_file_name)
|
|||
|
|
|||
|
predefined_needles_bak = get_unique_entries(
|
|||
|
needle_file_path,
|
|||
|
len(depths),
|
|||
|
language,
|
|||
|
unique_arg1=True,
|
|||
|
unique_arg2=True,
|
|||
|
unique_combination=True,
|
|||
|
)
|
|||
|
|
|||
|
def _generate_context(tokens_context, depths, needles):
|
|||
|
insertion_points = [
|
|||
|
int(len(tokens_context) * (depth / 100)) for depth in depths
|
|||
|
]
|
|||
|
|
|||
|
cumulative_inserted_length = 0
|
|||
|
|
|||
|
for i, needle in enumerate(needles):
|
|||
|
needle_tokens = _get_tokens_from_context(needle)
|
|||
|
current_insertion_point = min(
|
|||
|
insertion_points[i] + cumulative_inserted_length,
|
|||
|
len(tokens_context),
|
|||
|
)
|
|||
|
|
|||
|
tokens_context = (tokens_context[:current_insertion_point] +
|
|||
|
needle_tokens +
|
|||
|
tokens_context[current_insertion_point:])
|
|||
|
cumulative_inserted_length += len(needle_tokens)
|
|||
|
|
|||
|
new_context = _decode_tokens(tokens_context)
|
|||
|
return new_context
|
|||
|
|
|||
|
def _get_tokens_from_context(context):
|
|||
|
if isinstance(context, list):
|
|||
|
return [tokenizer.encode(item) for item in context]
|
|||
|
else:
|
|||
|
return tokenizer.encode(context)
|
|||
|
|
|||
|
def _decode_tokens(tokens):
|
|||
|
return tokenizer.decode(tokens)
|
|||
|
|
|||
|
def _generate_prompt(context, retrieval_question):
|
|||
|
if language == 'Chinese':
|
|||
|
if quesiton_position == 'End':
|
|||
|
prompt = f'''这是一个长文本能力的测试,你需要首先阅读下面的长文档,然后根据文档中的信息,依次回答最后的问题。
|
|||
|
长文档的内容如下
|
|||
|
|
|||
|
<文档>
|
|||
|
{context}
|
|||
|
</文档>
|
|||
|
|
|||
|
根据文档中的信息,现在请问:{retrieval_question}
|
|||
|
'''
|
|||
|
elif quesiton_position == 'Start':
|
|||
|
prompt = f'''这是一个长文本能力的测试,你需要首先阅读下面的问题,然后根据最后长文档中的信息,依次回答下面的问题。
|
|||
|
现在请问:{retrieval_question}
|
|||
|
|
|||
|
长文档内容的如下
|
|||
|
|
|||
|
<文档>
|
|||
|
{context}
|
|||
|
</文档>
|
|||
|
|
|||
|
'''
|
|||
|
else:
|
|||
|
raise ValueError(
|
|||
|
f'Unsupported quesiton_position {quesiton_position}. '
|
|||
|
'Position must be "End" or "Start".')
|
|||
|
elif language == 'English':
|
|||
|
if quesiton_position == 'End':
|
|||
|
prompt = f'''This is a test of long-text capability. You need to first read the long document below, and then answer the final questions one by one based on the information in the document.
|
|||
|
The content of the long document is as follows
|
|||
|
|
|||
|
<Document>
|
|||
|
{context}
|
|||
|
</Document>
|
|||
|
|
|||
|
Based on the information in the document, now please answer: {retrieval_question}
|
|||
|
'''
|
|||
|
elif quesiton_position == 'Start':
|
|||
|
prompt = f'''This is a test of long-text capability. You need to first read the questions below, and then answer them one by one based on the information in the long document that follows.
|
|||
|
Now please answer: {retrieval_question}
|
|||
|
|
|||
|
The content of the long document is as follows
|
|||
|
|
|||
|
<Document>
|
|||
|
{context}
|
|||
|
</Document>
|
|||
|
|
|||
|
'''
|
|||
|
else:
|
|||
|
raise ValueError(
|
|||
|
f'Unsupported quesiton_position {quesiton_position}. '
|
|||
|
'Position must be "End" or "Start".')
|
|||
|
else:
|
|||
|
raise ValueError(f"Language '{language}' is not supported.")
|
|||
|
|
|||
|
return prompt
|
|||
|
|
|||
|
for file_name in file_names:
|
|||
|
file_path = os.path.join(path, file_name)
|
|||
|
if file_name not in file_list:
|
|||
|
continue
|
|||
|
|
|||
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|||
|
lines_bak = [json.loads(line.strip()) for line in f]
|
|||
|
lines = lines_bak.copy()
|
|||
|
for counter in range(num_repeats_per_file):
|
|||
|
random.seed(counter)
|
|||
|
random.shuffle(lines)
|
|||
|
predefined_needles = predefined_needles_bak.copy()
|
|||
|
random.seed(counter)
|
|||
|
random.shuffle(predefined_needles)
|
|||
|
|
|||
|
needles = [
|
|||
|
'\n' + item['needle'] + '\n' for item in predefined_needles
|
|||
|
]
|
|||
|
keywords = [item['arg2'] for item in predefined_needles]
|
|||
|
if language == 'Chinese':
|
|||
|
questions = '、'.join([
|
|||
|
item['retrieval_question'].split('?')[0] + '?'
|
|||
|
for item in predefined_needles
|
|||
|
])
|
|||
|
|
|||
|
answers_format = '、'.join([
|
|||
|
item['retrieval_question'].split("'")[1].split('。')[0]
|
|||
|
for item in predefined_needles
|
|||
|
])
|
|||
|
retrieval_question = (questions + "请按照'" + answers_format +
|
|||
|
"'的格式回答。")
|
|||
|
elif language == 'English':
|
|||
|
questions = '、'.join([
|
|||
|
item['retrieval_question'].split('?')[0] + '?'
|
|||
|
for item in predefined_needles
|
|||
|
])
|
|||
|
|
|||
|
answers_format = '、'.join([
|
|||
|
item['retrieval_question'].split("'")[1].split('.')[0]
|
|||
|
for item in predefined_needles
|
|||
|
])
|
|||
|
retrieval_question = (questions +
|
|||
|
"Please answer in the format of '" +
|
|||
|
answers_format + "'")
|
|||
|
|
|||
|
context_length = length - length_buffer
|
|||
|
target_length_per_record = context_length - sum(
|
|||
|
len(tokens)
|
|||
|
for tokens in _get_tokens_from_context(needles))
|
|||
|
target_length_per_record = max(target_length_per_record, 0)
|
|||
|
accumulated_tokens = []
|
|||
|
for line in lines:
|
|||
|
tokens_current_line = _get_tokens_from_context(
|
|||
|
line['text'])
|
|||
|
accumulated_tokens.extend(tokens_current_line)
|
|||
|
|
|||
|
if len(accumulated_tokens) >= target_length_per_record:
|
|||
|
break
|
|||
|
|
|||
|
processed_text = _generate_context(
|
|||
|
accumulated_tokens[:target_length_per_record], depths,
|
|||
|
needles)
|
|||
|
|
|||
|
processed_prompt = _generate_prompt(processed_text,
|
|||
|
retrieval_question)
|
|||
|
|
|||
|
data['prompt'].append(processed_prompt)
|
|||
|
|
|||
|
data['answer'].append('*'.join(keywords) + '#' +
|
|||
|
'*'.join(map(str, depths)))
|
|||
|
|
|||
|
dataset = Dataset.from_dict({
|
|||
|
'prompt': data['prompt'],
|
|||
|
'answer': data['answer'],
|
|||
|
})
|
|||
|
return dataset
|
|||
|
|
|||
|
|
|||
|
class NeedleBenchParallelEvaluator(BaseEvaluator):
|
|||
|
|
|||
|
def score(self, predictions, gold):
|
|||
|
if len(predictions) != len(gold):
|
|||
|
return {'error': 'predictions and gold have different lengths'}
|
|||
|
print('predictions:', predictions)
|
|||
|
print('gold:', gold)
|
|||
|
|
|||
|
details = []
|
|||
|
depths = [int(i) for i in gold[0].split('#')[1].split('*')]
|
|||
|
scores_by_depth = {depth: 0 for depth in depths}
|
|||
|
|
|||
|
for prediction, reference in zip(predictions, gold):
|
|||
|
print(reference)
|
|||
|
keywords = reference.split('#')[0].split('*')
|
|||
|
print(keywords)
|
|||
|
for keyword, depth in zip(keywords, depths):
|
|||
|
print('iterating:', keyword, depth)
|
|||
|
if keyword in prediction:
|
|||
|
print(f'{keyword} at depth {depth} is in {prediction}')
|
|||
|
scores_by_depth[depth] += 100 / (len(predictions))
|
|||
|
|
|||
|
average_score = sum(scores_by_depth.values()) / len(scores_by_depth)
|
|||
|
|
|||
|
flattened_scores = {
|
|||
|
'Depth' + str(depth): score
|
|||
|
for depth, score in scores_by_depth.items()
|
|||
|
}
|
|||
|
|
|||
|
result = {
|
|||
|
**flattened_scores,
|
|||
|
'details': details,
|
|||
|
'average_score': average_score,
|
|||
|
}
|
|||
|
return result
|