mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
170 lines
6.4 KiB
Python
170 lines
6.4 KiB
Python
![]() |
# flake8: noqa
|
|||
|
import copy
|
|||
|
import json
|
|||
|
import random
|
|||
|
|
|||
|
from datasets import Dataset
|
|||
|
|
|||
|
from opencompass.registry import LOAD_DATASET
|
|||
|
|
|||
|
from ..base import BaseDataset
|
|||
|
|
|||
|
|
|||
|
def get_number(options):
|
|||
|
result_string = ''
|
|||
|
for i, option in enumerate(options, start=ord('A')):
|
|||
|
result_string += f'{chr(i)}. {option}\n'
|
|||
|
return result_string
|
|||
|
|
|||
|
|
|||
|
def get_circular_example(entry, id):
|
|||
|
"""For given example, generate four circular examples."""
|
|||
|
# Only 4 options is supported for current circular eval.
|
|||
|
circular_patterns = ['ABCD', 'BCDA', 'CDAB', 'DABC']
|
|||
|
data = []
|
|||
|
for c in circular_patterns:
|
|||
|
line = copy.deepcopy(entry)
|
|||
|
options = []
|
|||
|
for i in range(4):
|
|||
|
options.append(line['options'][ord(c[i]) - ord('A')])
|
|||
|
line['options'] = options
|
|||
|
line['answer'] = {
|
|||
|
c[0]: 'A',
|
|||
|
c[1]: 'B',
|
|||
|
c[2]: 'C',
|
|||
|
c[3]: 'D'
|
|||
|
}[line['answer']]
|
|||
|
line['answer'] = str(id) + '--' + line['answer'] + '--' + c
|
|||
|
line['question'] = line['question'].strip() + '\n' + get_number(
|
|||
|
line['options'])
|
|||
|
data.append(line)
|
|||
|
|
|||
|
return data
|
|||
|
|
|||
|
|
|||
|
@LOAD_DATASET.register_module()
|
|||
|
class NeedleBenchATCDataset(BaseDataset):
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def load(path: str,
|
|||
|
num_needles: int,
|
|||
|
language: str,
|
|||
|
repeats: int,
|
|||
|
with_circular: bool = True):
|
|||
|
"""NeedleBenthATC Dataset.
|
|||
|
|
|||
|
Args:
|
|||
|
path (str): Path of the needlebench dataset.
|
|||
|
name (str): Name of the target subset.
|
|||
|
with_circular (bool): Whether to create circular dataset for
|
|||
|
single choice question. Defaults to True.
|
|||
|
"""
|
|||
|
data = []
|
|||
|
entry = {}
|
|||
|
|
|||
|
with open(path, 'r', encoding='utf-8') as file:
|
|||
|
names_data = json.load(file)
|
|||
|
|
|||
|
all_names = names_data[language].split(',')
|
|||
|
|
|||
|
for id in range(repeats):
|
|||
|
random.seed(id)
|
|||
|
names = random.sample(all_names, num_needles)
|
|||
|
if language == 'Chinese':
|
|||
|
|
|||
|
relationship_terms = [
|
|||
|
'父亲', '母亲', '爸爸', '妈妈', '爷爷', '奶奶', '姥姥', '姥爷', '外公', '外婆'
|
|||
|
]
|
|||
|
|
|||
|
relationship_templates = [
|
|||
|
'{A}是{B}的{relationship}。',
|
|||
|
'{B}的{relationship}是{A}。',
|
|||
|
'{A}作为{B}的{relationship},对{B}的成长有重要影响。',
|
|||
|
'{A}不仅是{B}的{relationship},还是{B}的榜样。',
|
|||
|
'{B}是{A}所生的孩子。',
|
|||
|
'{A}对{B}来说,不只是一个{relationship},还是一个朋友。',
|
|||
|
'{A}在{B}的生命中扮演着{relationship}的角色。',
|
|||
|
'{B}把{A}视为其{relationship}。',
|
|||
|
]
|
|||
|
elif language == 'English':
|
|||
|
|
|||
|
relationship_terms = [
|
|||
|
'father', 'mother', 'dad', 'mom', 'grandfather',
|
|||
|
'grandmother', 'maternal grandmother',
|
|||
|
'maternal grandfather', 'paternal grandfather',
|
|||
|
'paternal grandmother'
|
|||
|
]
|
|||
|
|
|||
|
relationship_templates = [
|
|||
|
"{A} is {B}'s {relationship}.",
|
|||
|
"{B}'s {relationship} is {A}.",
|
|||
|
("{A}, as {B}'s {relationship}, "
|
|||
|
"has a significant impact on {B}'s upbringing."),
|
|||
|
("{A} is not only {B}'s {relationship} "
|
|||
|
"but also {B}'s role model."),
|
|||
|
'{B} is the child of {A}.',
|
|||
|
('For {B}, {A} is not just a {relationship}, '
|
|||
|
'but also a friend.'),
|
|||
|
("{A} plays the role of {B}'s {relationship} "
|
|||
|
"in {B}'s life."),
|
|||
|
'{B} considers {A} as their {relationship}.',
|
|||
|
]
|
|||
|
|
|||
|
def generate_chain_family_story(names, templates,
|
|||
|
relationship_terms):
|
|||
|
story = ''
|
|||
|
for i in range(len(names) - 1):
|
|||
|
template = random.choice(templates)
|
|||
|
relation_term = random.choice(relationship_terms)
|
|||
|
relation = template.format(A=names[i],
|
|||
|
B=names[i + 1],
|
|||
|
relationship=relation_term)
|
|||
|
story += f'{relation}*'
|
|||
|
return story
|
|||
|
|
|||
|
chain_story = generate_chain_family_story(names,
|
|||
|
relationship_templates,
|
|||
|
relationship_terms)
|
|||
|
|
|||
|
# Splitting the chain_story into a list of fragments
|
|||
|
family_story_fragments = chain_story.split('*')
|
|||
|
|
|||
|
# Shuffling the list of fragments
|
|||
|
random.shuffle(family_story_fragments)
|
|||
|
|
|||
|
# Joining the shuffled fragments back into a string
|
|||
|
shuffled_story = ''.join(family_story_fragments)
|
|||
|
|
|||
|
last_person = names[-1]
|
|||
|
|
|||
|
# Generating the prompt based on the language
|
|||
|
if language == 'Chinese':
|
|||
|
prompt = (f"""
|
|||
|
在上面提供的打乱的家族关系文本中,'{last_person}'的能够向上追溯到的最年长的亲人是谁?""")
|
|||
|
elif language == 'English':
|
|||
|
prompt = (f"""
|
|||
|
Given the scrambled family relationships described above, who is the eldest relative that '{last_person}' can trace back to in the context?"""
|
|||
|
)
|
|||
|
else:
|
|||
|
prompt = 'Language not supported.'
|
|||
|
raise Exception('Unsupported language specified. '
|
|||
|
"Please choose either 'Chinese' or 'English'.")
|
|||
|
|
|||
|
# Combine story and prompt
|
|||
|
shuffled_story_with_prompt = shuffled_story + ' ' + prompt
|
|||
|
|
|||
|
entry['question'] = shuffled_story_with_prompt
|
|||
|
if len(names) < 4:
|
|||
|
additional_names_needed = max(4 - len(names), 0)
|
|||
|
additional_names = random.sample(
|
|||
|
[name for name in all_names if name not in names],
|
|||
|
additional_names_needed)
|
|||
|
names.extend(additional_names)
|
|||
|
|
|||
|
entry['options'] = names[0:4]
|
|||
|
entry['answer'] = 'A'
|
|||
|
# print(entry)
|
|||
|
data.extend(get_circular_example(entry, id))
|
|||
|
dataset = Dataset.from_list(data)
|
|||
|
return dataset
|