mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
56 lines
1.7 KiB
Markdown
56 lines
1.7 KiB
Markdown
![]() |
# 评测LMDeploy模型
|
|||
|
|
|||
|
我们支持评测使用[LMDeploy](https://github.com/InternLM/lmdeploy)加速过的大语言模型。LMDeploy 由 MMDeploy 和 MMRazor 团队联合开发,是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。 **TurboMind** 是 LMDeploy 推出的高效推理引擎。OpenCompass 对 TurboMind 进行了适配,本教程将介绍如何使用 OpenCompass 来对 TurboMind 加速后的模型进行评测。
|
|||
|
|
|||
|
# 环境配置
|
|||
|
|
|||
|
## 安装OpenCompass
|
|||
|
|
|||
|
请根据OpenCompass[安装指南](https://opencompass.readthedocs.io/en/latest/get_started.html) 来安装算法库和准备数据集。
|
|||
|
|
|||
|
## 安装LMDeploy
|
|||
|
|
|||
|
使用pip安装LMDeploy( python 3.8+)
|
|||
|
|
|||
|
```shell
|
|||
|
pip install lmdeploy
|
|||
|
```
|
|||
|
|
|||
|
# 评测
|
|||
|
|
|||
|
我们使用InternLM作为例子来介绍如何评测
|
|||
|
|
|||
|
## 第一步: 获取InternLM模型
|
|||
|
|
|||
|
```shell
|
|||
|
# 1. Download InternLM model(or use the cached model's checkpoint)
|
|||
|
|
|||
|
# Make sure you have git-lfs installed (https://git-lfs.com)
|
|||
|
git lfs install
|
|||
|
git clone https://huggingface.co/internlm/internlm-chat-7b /path/to/internlm-chat-7b
|
|||
|
|
|||
|
# if you want to clone without large files – just their pointers
|
|||
|
# prepend your git clone with the following env var:
|
|||
|
GIT_LFS_SKIP_SMUDGE=1
|
|||
|
|
|||
|
# 2. Convert InternLM model to turbomind's format, which will be in "./workspace" by default
|
|||
|
python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
## 第二步: 验证转换后的模型
|
|||
|
|
|||
|
```shell
|
|||
|
python -m lmdeploy.turbomind.chat ./workspace
|
|||
|
```
|
|||
|
|
|||
|
## 第三步: 评测转换后的模型
|
|||
|
|
|||
|
在OpenCompass项目文件执行:
|
|||
|
|
|||
|
```shell
|
|||
|
python run.py configs/eval_internlm_chat_7b_turbomind.py -w outputs/turbomind
|
|||
|
```
|
|||
|
|
|||
|
当模型完成推理和指标计算后,我们便可获得模型的评测结果
|