mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
45 lines
1.5 KiB
Python
45 lines
1.5 KiB
Python
![]() |
from opencompass.multimodal.models.qwen import QwenVLChatPromptConstructor
|
||
|
|
||
|
# dataloader settings
|
||
|
val_pipeline = [
|
||
|
dict(type='mmpretrain.LoadImageFromFile'),
|
||
|
dict(type='mmpretrain.ToPIL', to_rgb=True),
|
||
|
dict(type='mmpretrain.torchvision/Resize',
|
||
|
size=(448, 448),
|
||
|
interpolation=3),
|
||
|
dict(type='mmpretrain.torchvision/ToTensor'),
|
||
|
dict(type='mmpretrain.torchvision/Normalize',
|
||
|
mean=(0.48145466, 0.4578275, 0.40821073),
|
||
|
std=(0.26862954, 0.26130258, 0.27577711)),
|
||
|
dict(type='mmpretrain.PackInputs',
|
||
|
algorithm_keys=['image_id'])
|
||
|
]
|
||
|
|
||
|
dataset = dict(type='mmpretrain.COCOCaption',
|
||
|
data_root='data/coco',
|
||
|
data_prefix=dict(img_path='images'),
|
||
|
ann_file='annotations/coco_karpathy_val.json',
|
||
|
pipeline=val_pipeline)
|
||
|
|
||
|
qwen_coco_caption_dataloader = dict(batch_size=1,
|
||
|
num_workers=4,
|
||
|
dataset=dataset,
|
||
|
collate_fn=dict(type='pseudo_collate'),
|
||
|
sampler=dict(type='DefaultSampler', shuffle=False))
|
||
|
|
||
|
# model settings
|
||
|
qwen_coco_caption_model = dict(
|
||
|
type='qwen-vl-chat',
|
||
|
pretrained_path='Qwen/Qwen-VL-Chat', # or Huggingface repo id
|
||
|
prompt_constructor=dict(type=QwenVLChatPromptConstructor, prompt='Describe the image.'),
|
||
|
is_caption_task=True,
|
||
|
)
|
||
|
|
||
|
# evaluation settings
|
||
|
qwen_coco_caption_evaluator = [
|
||
|
dict(
|
||
|
type='mmpretrain.COCOCaption',
|
||
|
ann_file='data/coco/annotations/coco_karpathy_val_gt.json',
|
||
|
) # noqa
|
||
|
]
|