OpenCompass/opencompass/datasets/srbench.py

166 lines
6.6 KiB
Python
Raw Normal View History

2025-05-27 11:41:21 +08:00
from datasets import load_dataset
from opencompass.datasets.base import BaseDataset
from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path
from opencompass.openicl.icl_evaluator import BaseEvaluator
from sklearn.metrics import r2_score,root_mean_squared_error
import os
import numpy as np
import pandas as pd
import json
2025-05-30 10:18:58 +08:00
import re
2025-05-27 11:41:21 +08:00
import requests
import sympy as sp
@LOAD_DATASET.register_module()
class SRbenchDataset(BaseDataset):
@staticmethod
def load(path: str,local_mode=True):
2025-05-30 11:21:25 +08:00
base_path = get_data_path(path,local_mode=local_mode)
2025-05-27 11:41:21 +08:00
formula_csv_path = os.path.join(base_path, f'FeynmanEquation_23.csv')
data_files_base_dir = os.path.join(base_path, 'Feynman_with_units')
2025-05-30 10:18:58 +08:00
dataset = load_dataset('csv', data_files=formula_csv_path)['train']
2025-05-27 11:41:21 +08:00
sample_data=[]
prompt_1_out=[]
prompt_2_out=[]
2025-05-30 10:18:58 +08:00
for row in dataset:
2025-05-27 11:41:21 +08:00
true_formula = str(row["Formula"])
n_var=int(row["n_variables"])
data_filename = str(row['Filename'])
2025-05-30 10:18:58 +08:00
2025-05-27 11:41:21 +08:00
data_file_path = os.path.join(data_files_base_dir, data_filename)
full_dataset = np.loadtxt(data_file_path)
rand_idx = np.random.choice(full_dataset.shape[0], 100, replace=False)
sampled_data_i = full_dataset[rand_idx]
if isinstance(sampled_data_i, np.ndarray):
sample_data.append(sampled_data_i.tolist())
else:
sample_data.append(sampled_data_i)
2025-05-30 10:18:58 +08:00
# x = dataset[:, :n_var]
# y_true = dataset[:, -1]
if n_var==2:
2025-05-27 11:41:21 +08:00
prompt_1 = '\n'.join([f'x0={x1:.4f}, x1={x2:.4f}, y={y:.4f}' for x1, x2, y in sampled_data_i[:-1]])
prompt_2=f'x0={sampled_data_i[-1, 0]:.4f}, x1={sampled_data_i[-1, 1]:.4f}, y={sampled_data_i[-1, 2]:.4f}'
else:
prompt_1 = '\n'.join([f'x0={x1:.4f}, x1={x2:.4f}, x2={x3:.4f},y={y:.4f}' for x1, x2,x3, y in sampled_data_i[:-1]])
prompt_2=f'x0={sampled_data_i[-1, 0]:.4f}, x1={sampled_data_i[-1, 1]:.4f},x3={sampled_data_i[-1, 2]:.4f}, y={sampled_data_i[-1, 3]:.4f}'
2025-05-30 11:21:25 +08:00
2025-05-27 11:41:21 +08:00
prompt_1_out.append(prompt_1)
prompt_2_out.append(prompt_2)
2025-05-30 10:18:58 +08:00
dataset=dataset.add_column(name="prompt1",column=prompt_1_out)
dataset=dataset.add_column(name="prompt2",column=prompt_2_out)
dataset=dataset.add_column(name="data_samples_list",column=sample_data)
dataset = dataset.rename_column('n_variables', 'n_var')
return dataset
def mydataset_postprocess(formula_str):
2025-05-30 11:21:25 +08:00
# 1. 删除 Markdown 残留符号
2025-05-30 10:18:58 +08:00
formula_str = formula_str.replace('×', '*').replace('·', '*').replace('÷', '/')
formula_str = formula_str.replace('', '-').replace('^', '**')
formula_str = formula_str.replace('', '"').replace('', '"').replace('', "'")
2025-05-30 11:21:25 +08:00
# 2. 去除 markdown 反引号 ``` 和 $ 符号
2025-05-30 10:18:58 +08:00
formula_str = formula_str.replace('`', '').replace('$', '').strip()
2025-05-30 11:21:25 +08:00
# 3. 提取第一行公式(防止有多行解释性输出)
2025-05-30 10:18:58 +08:00
formula_str = formula_str.split('\n')[0].strip()
2025-05-30 11:21:25 +08:00
# 4. 用正则去除非合法字符(保留基本数学表达式)
2025-05-30 10:18:58 +08:00
formula_str = re.sub(r'[^\w\s\+\-\*/\^\=\.\(\)]', '', formula_str)
# 5. 确保左右去空格
return formula_str.strip()
2025-05-27 11:41:21 +08:00
class SRbenchDatasetEvaluator(BaseEvaluator):
def __init__(self,
local_mode: bool = True,path=""):
2025-05-30 11:21:25 +08:00
self.dataset=SRbenchDataset.load(path,local_mode=local_mode)
2025-05-27 11:41:21 +08:00
def parse_formula(self,formula_str, n_var=2):
try:
if '=' in formula_str:
_, expr_str = formula_str.split('=', 1)
else:
expr_str = formula_str
variables = [sp.Symbol(f'x{i}') for i in range(n_var)]
expr = sp.sympify(expr_str)
func = sp.lambdify(variables, expr, modules='numpy')
return func
except Exception as e:
print(f'[Parse Error] {formula_str}\n{e}')
return None
def is_symbolically_equivalent(self,formula1, formula2, n_var=2):
try:
x = [sp.Symbol(f'x{i}') for i in range(n_var)]
expr1 = sp.sympify(formula1.split('=')[1] if '=' in formula1 else formula1)
expr2 = sp.sympify(formula2.split('=')[1] if '=' in formula2 else formula2)
return sp.simplify(expr1 - expr2) == 0
except Exception:
return False
def score(self, predictions, references) -> dict:
metrics = {
'LLM_Score': None,
'RMSE': None,
'SymbolicMatch': False,
'R2': 0}
metrics_out={
'LLM_Score': None,
'RMSE': None,
'Accuray': False,
'R2': 0
}
result = pd.DataFrame({
'GT': pd.Series(dtype=str),
'Pred': pd.Series(dtype=str),
'Score': pd.Series(dtype=float),
'RMSE': pd.Series(dtype=float),
'R2': pd.Series(dtype=float),
'SymbolicMatch': pd.Series(dtype=bool)
})
2025-05-30 11:21:25 +08:00
# 结构评分(用 LLM
2025-05-27 11:41:21 +08:00
for row in range(len(references)):
2025-05-30 10:18:58 +08:00
#metrics['LLM_Score'] = float(self.llm_evaluate(predictions[row], references[row], mllm='gpt-4o'))
2025-05-27 11:41:21 +08:00
n_var=self.dataset[row]["n_var"]
2025-05-30 11:21:25 +08:00
data_sample=self.dataset[row]["data_samples_list"]
data_sample = np.array(data_sample)
x=data_sample[:,:n_var]
y_true=data_sample[:,-1]
2025-05-27 11:41:21 +08:00
func = self.parse_formula(predictions[row], n_var=n_var)
if func is not None:
2025-05-30 11:21:25 +08:00
x_vars = [x[:, i] for i in range(n_var)]
y_pred = func(*x_vars)
if np.isscalar(y_pred):
y_pred = np.full_like(y_true, y_pred)
metrics['RMSE'] = root_mean_squared_error(y_true, y_pred)
metrics['R2'] = r2_score(y_true, y_pred)
2025-05-27 11:41:21 +08:00
else:
metrics["R2"]=0
2025-05-30 10:18:58 +08:00
metrics["RMSE"]= np.inf
2025-05-27 11:41:21 +08:00
metrics['SymbolicMatch'] = self.is_symbolically_equivalent(predictions[row], references[row], n_var)
result = result._append({
'GT': references[row],
'Pred': predictions[row],
'RMSE': metrics['RMSE'],
'R2': metrics['R2'],
'SymbolicMatch': bool(metrics['SymbolicMatch'])
}, ignore_index=True)
if not result.empty:
symbolic_accuracy = result['SymbolicMatch'].sum() / len(result)
R2_out = result['R2'].sum() / len(result)
RMSE_out = result['RMSE'].sum() / len(result)
2025-05-30 10:18:58 +08:00
2025-05-27 11:41:21 +08:00
metrics_out={
'RMSE': RMSE_out,
'R2': R2_out,
"Accuracy":symbolic_accuracy
}
2025-05-30 10:18:58 +08:00
2025-05-27 11:41:21 +08:00
return metrics_out
2025-05-30 10:18:58 +08:00