OpenCompass/opencompass/datasets/calm/evaluation/errors.py

236 lines
10 KiB
Python
Raw Normal View History

import json
import importlib
from pathlib import Path
import json
import os
from ..evaluation.core_metrics import initialize_core_metric_evaluation_components
def initialize_error_identification_components(task, prompt_style):
"""
Initialize error identification components.
Args:
task (str): The task for which error identification components are being initialized.
prompt_style (str): The style of prompt for error identification.
Returns:
Module: The error identification module corresponding to the provided task and prompt style.
"""
prompt_style_to_error_module_map = {"basic":"basic_adversarial",
"basic-CN":"basic_adversarial",
"adversarial-ignore":"basic_adversarial",
"adversarial-ignore-CN":"basic_adversarial",
"adversarial-doubt":"basic_adversarial",
"adversarial-doubt-CN":"basic_adversarial",
"zero-shot-IcL":"icl",
"zero-shot-IcL-CN":"icl",
"one-shot-IcL":"icl",
"one-shot-IcL-CN":"icl",
"three-shot-IcL":"icl",
"three-shot-IcL-CN":"icl",
"zero-shot-CoT":"cot",
"zero-shot-CoT-CN":"cot",
"manual-CoT":"cot",
"manual-CoT-CN":"cot"}
task_to_error_module_map = {
# association/
# correlation/
"CORR-B_correlation_CN":"CLADDER",
"CORR-B_correlation_EN":"CLADDER",
# explaining_away_effect/
"EAE-B_exp-away_CN":"CLADDER",
"EAE-B_exp-away_EN":"CLADDER",
# causal_discovery/
# abstract_reasoning/
"AR-B_CaLM-AR_CN":"AR-B_CaLM-AR",
"AR-B_CaLM-AR_EN":"AR-B_CaLM-AR",
# causal_attribution/
"CA-B_FA_CN":"CA-B",
"CA-B_FA_EN":"CA-B",
"CA-B_FP_CN":"CA-B",
"CA-B_FP_EN":"CA-B",
# event_causality_identification/
"ECI-B_CTB_CN":"ECI",
"ECI-B_CTB_EN":"ECI",
"ECI-B_ESC_CN":"ECI",
"ECI-B_ESC_EN":"ECI",
"ECI-B_MAVEN-ERE_CN":"ECI",
"ECI-B_MAVEN-ERE_EN":"ECI",
# pairwise_causal_discovery/
"PCD-B_COPA_CN":"PCD-B",
"PCD-B_COPA_EN":"PCD-B",
"PCD-B_E-CARE_CN":"PCD-B",
"PCD-B_E-CARE_EN":"PCD-B",
"PCD-C_COPA_CN":"PCD-C",
"PCD-C_COPA_EN":"PCD-C",
"PCD-C_E-CARE_CN":"PCD-C",
"PCD-C_E-CARE_EN":"PCD-C",
# counterfactual/
# actual_causality/
"AC-B_causal_judgement_CN":"AC-B_causal_judgement",
"AC-B_causal_judgement_EN":"AC-B_causal_judgement",
# counterfactual_reasoning/
"CR-B_det-counterfactual_CN":"CLADDER",
"CR-B_det-counterfactual_EN":"CLADDER",
"CR-C_CRASS_CN":"CR-C_CRASS",
"CR-C_CRASS_EN":"CR-C_CRASS",
# effect_of_the_treatment_on_the_treated/
"ETT-B_ETT-natural_CN":"Natural",
"ETT-B_ETT-natural_EN":"Natural",
"ETT-P_ETT-basic_CN":"Probability",
"ETT-P_ETT-basic_EN":"Probability",
"ETT-P_ETT-hard_CN":"Probability",
"ETT-P_ETT-hard_EN":"Probability",
# natural_direct_effect/
"NDE-B_NDE-natural_CN":"Natural",
"NDE-B_NDE-natural_EN":"Natural",
"NDE-P_NDE-basic_CN":"Probability",
"NDE-P_NDE-basic_EN":"Probability",
"NDE-P_NDE-hard_CN":"Probability",
"NDE-P_NDE-hard_EN":"Probability",
# natural_indirect_effect/
"NIE-B_NIE-natural_CN":"Natural",
"NIE-B_NIE-natural_EN":"Natural",
"NIE-P_NIE-basic_CN":"Probability",
"NIE-P_NIE-basic_EN":"Probability",
"NIE-P_NIE-hard_CN":"Probability",
"NIE-P_NIE-hard_EN":"Probability",
# probability_of_necessity/
"PN-P_PN-basic_CN":"Probability",
"PN-P_PN-basic_EN":"Probability",
"PN-P_PN-hard_CN":"Probability",
"PN-P_PN-hard_EN":"Probability",
# probability_of_sufficiency/
"PS-P_PS-basic_CN":"Probability",
"PS-P_PS-basic_EN":"Probability",
"PS-P_PS-hard_CN":"Probability",
"PS-P_PS-hard_EN":"Probability",
# intervention/
# average_treatment_effect/
"ATE-B_ATE-natural_CN":"Natural",
"ATE-B_ATE-natural_EN":"Natural",
"ATE-P_ATE-basic_CN":"Probability",
"ATE-P_ATE-basic_EN":"Probability",
"ATE-P_ATE-hard_CN":"Probability",
"ATE-P_ATE-hard_EN":"Probability",
# backdoor_adjustment_set/
"BAS-B_backadj_CN":"CLADDER",
"BAS-B_backadj_EN":"CLADDER",
"BAS-C_max-BAS_CN":"AS",
"BAS-C_max-BAS_EN":"AS",
"BAS-C_min-BAS_CN":"AS",
"BAS-C_min-BAS_EN":"AS",
"BAS-C_mix-BAS_CN":"AS",
"BAS-C_mix-BAS_EN":"AS",
# causal_effect_identification/
"CEI-B_0.2-UC_CN":"CEI-B",
"CEI-B_0.2-UC_EN":"CEI-B",
"CEI-B_0.4-UC_CN":"CEI-B",
"CEI-B_0.4-UC_EN":"CEI-B",
"CEI-B_0.6-UC_CN":"CEI-B",
"CEI-B_0.6-UC_EN":"CEI-B",
"CEI-B_0.8-UC_CN":"CEI-B",
"CEI-B_0.8-UC_EN":"CEI-B",
# collider_bias/
"CB-B_collider-bias_CN":"CLADDER",
"CB-B_collider-bias_EN":"CLADDER",
# controlled_direct_effect/
"CDE-B_CDE-natural_CN":"Natural",
"CDE-B_CDE-natural_EN":"Natural",
"CDE-P_CDE-basic_CN":"Probability",
"CDE-P_CDE-basic_EN":"Probability",
"CDE-P_CDE-hard_CN":"Probability",
"CDE-P_CDE-hard_EN":"Probability",
# frontdoor_adjustment_set/
"FAS-C_FAS_CN":"AS",
"FAS-C_FAS_EN":"AS",
# instrumental_variable/
"IV-C_CaLM-IV_CN":"AS",
"IV-C_CaLM-IV_EN":"AS",
}
error_task_module_name = task_to_error_module_map.get(task)
error_prompt_module_name = prompt_style_to_error_module_map.get(prompt_style)
if error_task_module_name and error_prompt_module_name:
error_module = importlib.import_module(f"opencompass.datasets.calm.evaluation.error.{error_prompt_module_name}.{error_task_module_name}")
return error_module
else:
raise NotImplementedError(f"No get_score function found for task {task} and prompt {prompt_style}.")
def identify_model_errors(items, task, prompt_style, gt_items):
"""
Identify errors in model responses based on provided items, task, and prompt style.
Args:
items (list): A list of items containing model responses.
task (str): The task type, note that CEG-O_E-CARE is not supported for error analysis.
prompt_style (str): The style of prompt used, note that explicit-function is not supported for error analysis.
gt_items (list): A list of ground truth items.
Returns:
dict: A dictionary containing error metrics for the model responses. (Same response to all questions, language inconsistency, limitation of instruction-following, repetition, empty response.)
"""
if task == "CEG-O_E-CARE" or prompt_style in ["explicit-function", "explicit-function-CN"]:
print("CEG-O_E-CARE and explicit-function prompts are not supported for error identification.")
return
language_error, nonstandrad, repetition, empty = 0., 0., 0., 0.
error_module = initialize_error_identification_components(task, prompt_style)
get_gt_label, get_pred_label, compute_acc = initialize_core_metric_evaluation_components(task)
pred_list = []
for item, gt_item in zip(items, gt_items):
pred_label = get_pred_label(item, gt_item, prompt_style, task.split("-")[0])
pred_error = get_item_error(item, task, error_module, prompt_style)
pred_list.append(pred_label)
language_error += pred_error["language_error"]
nonstandrad += pred_error["nonstandrad"]
repetition += pred_error["repetition"]
empty += pred_error["empty"]
abnormalities = error_module.check_abnormality(pred_list)
return {
"Same response to all questions": 1 if abnormalities!=0 else 0,
"Language inconsistency": language_error / len(pred_list),
"Limitation of instruction-following": nonstandrad / len(pred_list),
"Repetition": repetition / len(pred_list),
"Empty response": empty / len(pred_list),
}
def get_item_error(model_response, task, error_module, prompt_style):
"""
Analyze errors in a single model response for a given task and prompt style.
Args:
model_response (str): The model's response to analyze.
task (str): The task type.
error_module: The error module containing error identification methods.
prompt_style (str): The style of prompt used.
Returns:
dict: A dictionary containing error metrics for the model response. (Language inconsistency, nonstandardization, repetition, empty response.)
"""
model_response = model_response.strip().lower()
if 'CN' in task:
language_error = error_module.contains_english(model_response)
elif 'CN' not in task:
language_error = error_module.contains_chinese(model_response)
nonstandrad = error_module.check_standalization(model_response, prompt_style, type=task.split("-")[0])
repetition = error_module.check_repetition(model_response)
empty = error_module.check_empty(model_response)
return {
"language_error": language_error,
"nonstandrad": nonstandrad,
"repetition": repetition,
"empty": empty,
}