OpenCompass/configs/datasets/ds1000/ds1000_gen_cbc84f.py

68 lines
1.8 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (DS1000Dataset, ds1000_postprocess,
ds1000_matplotlib_postprocess,
DS1000Evaluator)
ds1000_reader_cfg = dict(
2024-05-14 15:35:58 +08:00
input_columns=['prompt'],
output_column='test_column',
train_split='test',
test_split='test')
ds1000_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
2024-05-14 15:35:58 +08:00
role='HUMAN',
prompt='{prompt}',
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
ds1000_eval_cfg = dict(
evaluator=dict(type=DS1000Evaluator),
2024-05-14 15:35:58 +08:00
pred_role='BOT',
pred_postprocessor=dict(type=ds1000_postprocess),
)
# The DS-1000 dataset can be downloaded from
# https://github.com/HKUNLP/DS-1000/blob/main/ds1000_data.zip
ds1000_datasets = [
dict(
2024-05-14 15:35:58 +08:00
abbr=f'ds1000_{lib}',
type=DS1000Dataset,
2024-05-14 15:35:58 +08:00
path='./data/ds1000_data/',
libs=f'{lib}',
reader_cfg=ds1000_reader_cfg,
infer_cfg=ds1000_infer_cfg,
eval_cfg=ds1000_eval_cfg,
) for lib in [
'Pandas',
'Numpy',
'Tensorflow',
'Scipy',
'Sklearn',
'Pytorch',
]
]
ds1000_datasets.append(
dict(
2024-05-14 15:35:58 +08:00
abbr='ds1000_Matplotlib',
type=DS1000Dataset,
2024-05-14 15:35:58 +08:00
path='./data/ds1000_data/',
libs='Matplotlib',
reader_cfg=ds1000_reader_cfg,
infer_cfg=ds1000_infer_cfg,
eval_cfg=dict(
evaluator=dict(type=DS1000Evaluator),
2024-05-14 15:35:58 +08:00
pred_role='BOT',
pred_postprocessor=dict(type=ds1000_matplotlib_postprocess),
),
))