2023-07-05 10:33:12 +08:00
|
|
|
import os.path as osp
|
2023-10-27 20:31:22 +08:00
|
|
|
from typing import Dict, List, Optional
|
2023-07-05 10:33:12 +08:00
|
|
|
|
|
|
|
from mmengine.config import Config, ConfigDict
|
|
|
|
|
|
|
|
from opencompass.registry import PARTITIONERS
|
|
|
|
from opencompass.utils import get_infer_output_path
|
|
|
|
|
|
|
|
from .base import BasePartitioner
|
|
|
|
|
|
|
|
|
|
|
|
@PARTITIONERS.register_module()
|
|
|
|
class NaivePartitioner(BasePartitioner):
|
2023-10-27 20:31:22 +08:00
|
|
|
"""Naive task partitioner. This partitioner will generate a task for each n
|
|
|
|
model-dataset pairs.
|
2023-07-05 10:33:12 +08:00
|
|
|
|
|
|
|
Args:
|
2023-09-22 15:42:31 +08:00
|
|
|
out_dir (str): The output directory of tasks.
|
2023-10-27 20:31:22 +08:00
|
|
|
n (int): The number of model-dataset pairs in each task.
|
2023-09-22 15:42:31 +08:00
|
|
|
keep_keys (List[str]): The keys to be kept from the experiment config
|
|
|
|
to the task config.
|
2023-07-05 10:33:12 +08:00
|
|
|
"""
|
|
|
|
|
2023-10-27 20:31:22 +08:00
|
|
|
def __init__(self,
|
|
|
|
out_dir: str,
|
|
|
|
n: int = 1,
|
|
|
|
keep_keys: Optional[List[str]] = None):
|
|
|
|
super().__init__(out_dir=out_dir, keep_keys=keep_keys)
|
|
|
|
self.n = n
|
|
|
|
|
2023-09-22 15:42:31 +08:00
|
|
|
def partition(self,
|
2023-12-11 17:42:53 +08:00
|
|
|
model_dataset_combinations: List[Dict[str,
|
|
|
|
List[ConfigDict]]],
|
2023-09-22 15:42:31 +08:00
|
|
|
work_dir: str,
|
|
|
|
out_dir: str,
|
|
|
|
add_cfg: Dict = {}) -> List[Dict]:
|
2023-07-05 10:33:12 +08:00
|
|
|
"""Partition model-dataset pairs into tasks. Each task is defined as a
|
|
|
|
dict and will run independently as a unit. Its structure is as
|
|
|
|
follows:
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
{
|
|
|
|
'models': [], # a list of model configs
|
|
|
|
'datasets': [[]], # a nested list of dataset configs, each
|
|
|
|
list corresponds to a model
|
|
|
|
'work_dir': '', # the work dir
|
|
|
|
}
|
|
|
|
|
|
|
|
Args:
|
2023-12-11 17:42:53 +08:00
|
|
|
model_dataset_combinations (List[Dict]): List of
|
|
|
|
`{models: [...], datasets: [...]}` dicts. Each dict contains
|
|
|
|
a list of model configs and a list of dataset configs.
|
2023-07-05 10:33:12 +08:00
|
|
|
work_dir (str): The work dir for the task.
|
|
|
|
out_dir (str): The full output path for the task, intended for
|
|
|
|
Partitioners to check whether the task is finished via the
|
|
|
|
existency of result file in this directory.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Dict]: A list of tasks.
|
|
|
|
"""
|
|
|
|
|
|
|
|
tasks = []
|
2023-12-11 17:42:53 +08:00
|
|
|
for comb in model_dataset_combinations:
|
|
|
|
for model in comb['models']:
|
|
|
|
chunks = []
|
|
|
|
for dataset in comb['datasets']:
|
|
|
|
filename = get_infer_output_path(model, dataset, out_dir)
|
|
|
|
if osp.exists(filename):
|
|
|
|
continue
|
|
|
|
chunks.append(dataset)
|
2023-10-27 20:31:22 +08:00
|
|
|
|
2023-12-11 17:42:53 +08:00
|
|
|
for i in range(0, len(chunks), self.n):
|
|
|
|
task = Config({
|
|
|
|
'models': [model],
|
|
|
|
'datasets': [chunks[i:i + self.n]],
|
|
|
|
'work_dir': work_dir,
|
|
|
|
**add_cfg
|
|
|
|
})
|
|
|
|
tasks.append(task)
|
2023-07-05 10:33:12 +08:00
|
|
|
return tasks
|