2024-04-28 18:56:24 +08:00
|
|
|
from mmengine.config import read_base
|
|
|
|
|
|
|
|
from opencompass.models import HuggingFaceCausalLM
|
|
|
|
from opencompass.partitioners import NaivePartitioner
|
|
|
|
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
|
|
|
from opencompass.runners import LocalRunner
|
|
|
|
from opencompass.tasks import OpenICLInferTask
|
|
|
|
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
|
|
|
from opencompass.summarizers import FlamesSummarizer
|
|
|
|
|
|
|
|
|
|
|
|
# -------------Inferen Stage ----------------------------------------
|
|
|
|
|
|
|
|
with read_base():
|
|
|
|
from .datasets.flames.flames_gen import flames_datasets
|
|
|
|
from .models.hf_internlm.hf_internlm2_chat_7b import models
|
|
|
|
datasets = [*flames_datasets]
|
|
|
|
|
|
|
|
|
|
|
|
from opencompass.models import HuggingFaceCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
_meta_template = dict(
|
|
|
|
round=[
|
|
|
|
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
|
|
|
|
dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
|
|
|
|
models = [
|
|
|
|
dict(
|
|
|
|
type=HuggingFaceCausalLM,
|
|
|
|
abbr='internlm2-chat-7b-hf',
|
2024-05-14 15:35:58 +08:00
|
|
|
path='internlm/internlm2-chat-7b',
|
2024-04-28 18:56:24 +08:00
|
|
|
tokenizer_path='internlm/internlm2-chat-7b',
|
|
|
|
model_kwargs=dict(
|
|
|
|
trust_remote_code=True,
|
|
|
|
device_map='auto',
|
|
|
|
),
|
|
|
|
tokenizer_kwargs=dict(
|
|
|
|
padding_side='left',
|
|
|
|
truncation_side='left',
|
|
|
|
use_fast=False,
|
|
|
|
trust_remote_code=True,
|
|
|
|
),
|
|
|
|
max_out_len=2048,
|
|
|
|
max_seq_len=2048,
|
|
|
|
batch_size=8,
|
|
|
|
meta_template=_meta_template,
|
|
|
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
|
|
|
end_str='<|im_end|>',
|
2024-05-14 15:35:58 +08:00
|
|
|
generation_kwargs = {'eos_token_id': [2, 92542], 'do_sample': True},
|
2024-04-28 18:56:24 +08:00
|
|
|
batch_padding=True,
|
|
|
|
)
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
infer = dict(
|
|
|
|
partitioner=dict(type=NaivePartitioner),
|
|
|
|
runner=dict(
|
|
|
|
type=LocalRunner,
|
|
|
|
max_num_workers=256,
|
|
|
|
task=dict(type=OpenICLInferTask)),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# -------------Evalation Stage ----------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
## ------------- JudgeLLM Configuration---------------------------------
|
2024-04-28 21:54:30 +08:00
|
|
|
internlm1_chat_template = dict(
|
|
|
|
round=[
|
|
|
|
dict(role='HUMAN', begin='<|User|>:', end='\n'),
|
|
|
|
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
|
2024-04-28 18:56:24 +08:00
|
|
|
judge_models = [
|
|
|
|
dict(
|
|
|
|
type=HuggingFaceCausalLM,
|
|
|
|
abbr='flames-scorer',
|
|
|
|
path='CaasiHUANG/flames-scorer',
|
|
|
|
tokenizer_path='CaasiHUANG/flames-scorer',
|
|
|
|
model_kwargs=dict(
|
|
|
|
trust_remote_code=True,
|
|
|
|
device_map='auto',
|
|
|
|
),
|
|
|
|
tokenizer_kwargs=dict(
|
|
|
|
padding_side='left',
|
|
|
|
truncation_side='left',
|
|
|
|
use_fast=False,
|
|
|
|
trust_remote_code=True,
|
|
|
|
),
|
2024-05-14 15:35:58 +08:00
|
|
|
generation_kwargs = {'do_sample': True},
|
2024-04-28 21:54:30 +08:00
|
|
|
max_out_len=512,
|
|
|
|
max_seq_len=4096,
|
2024-04-28 18:56:24 +08:00
|
|
|
batch_size=8,
|
2024-04-28 21:54:30 +08:00
|
|
|
meta_template=internlm1_chat_template,
|
2024-04-28 18:56:24 +08:00
|
|
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
2024-04-28 21:54:30 +08:00
|
|
|
end_str='<eoa>',
|
2024-04-28 18:56:24 +08:00
|
|
|
)
|
|
|
|
]
|
|
|
|
|
2024-04-28 21:54:30 +08:00
|
|
|
|
2024-04-28 18:56:24 +08:00
|
|
|
## ------------- Evaluation Configuration----------------
|
|
|
|
eval = dict(
|
|
|
|
partitioner=dict(
|
|
|
|
type=SubjectiveNaivePartitioner,
|
|
|
|
mode='singlescore',
|
|
|
|
models = models,
|
|
|
|
judge_models = judge_models,
|
|
|
|
),
|
|
|
|
runner=dict(
|
|
|
|
type=LocalRunner,
|
|
|
|
max_num_workers=256,
|
|
|
|
task=dict(
|
|
|
|
type=SubjectiveEvalTask
|
|
|
|
)),
|
|
|
|
)
|
|
|
|
|
|
|
|
summarizer = dict(
|
|
|
|
type=FlamesSummarizer, judge_type = 'general'
|
|
|
|
)
|
|
|
|
|
2024-05-14 15:35:58 +08:00
|
|
|
work_dir = 'outputs/flames/'
|