2023-12-26 15:36:27 +08:00
from opencompass . openicl . icl_prompt_template import PromptTemplate
from opencompass . openicl . icl_retriever import ZeroRetriever
from opencompass . openicl . icl_inferencer import GenInferencer
from opencompass . openicl . icl_evaluator import AccEvaluator
from opencompass . utils . text_postprocessors import first_option_postprocess
from opencompass . datasets import InfiniteBenchcoderunDataset
InfiniteBench_coderun_reader_cfg = dict (
input_columns = [ ' context ' , ' func ' , ' func_call ' ] ,
output_column = ' answer ' ,
2024-05-14 15:35:58 +08:00
2023-12-26 15:36:27 +08:00
)
InfiniteBench_coderun_infer_cfg = dict (
prompt_template = dict (
type = PromptTemplate ,
template = dict (
begin = [
dict ( role = ' SYSTEM ' , fallback_role = ' HUMAN ' , prompt = ' You are a helpful assistant. ' ) ,
] ,
round = [
dict ( role = ' HUMAN ' , prompt = ' Following is a set of Python functions. There is a function called named {func} . \n \n {context} \n \n Please give me the exact number of the return value of {func_call} . Be concise. Your response must end with the final returned value. ' ) ,
dict ( role = ' BOT ' , prompt = ' ' ) ,
] , ) ) ,
retriever = dict ( type = ZeroRetriever ) ,
inferencer = dict ( type = GenInferencer , max_out_len = 5 )
)
InfiniteBench_coderun_eval_cfg = dict (
evaluator = dict ( type = AccEvaluator ) ,
pred_postprocessor = dict ( type = first_option_postprocess , options = ' ABCD ' ) ,
pred_role = ' BOT '
)
InfiniteBench_coderun_datasets = [
dict (
type = InfiniteBenchcoderunDataset ,
abbr = ' InfiniteBench_coderun ' ,
path = ' ./data/InfiniteBench/code_run.jsonl ' ,
reader_cfg = InfiniteBench_coderun_reader_cfg ,
infer_cfg = InfiniteBench_coderun_infer_cfg ,
eval_cfg = InfiniteBench_coderun_eval_cfg )
]