OpenCompass/docs/en/get_started/faq.md

61 lines
5.7 KiB
Markdown
Raw Normal View History

# FAQ
## General
### How does OpenCompass allocate GPUs?
OpenCompass processes evaluation requests using the unit termed as "task". Each task is an independent combination of model(s) and dataset(s). The GPU resources needed for a task are determined entirely by the model being evaluated, specifically by the `num_gpus` parameter.
During evaluation, OpenCompass deploys multiple workers to execute tasks in parallel. These workers continuously try to secure GPU resources and run tasks until they succeed. As a result, OpenCompass always strives to leverage all available GPU resources to their maximum capacity.
For instance, if you're using OpenCompass on a local machine equipped with 8 GPUs, and each task demands 4 GPUs, then by default, OpenCompass will employ all 8 GPUs to concurrently run 2 tasks. However, if you adjust the `--max-num-workers` setting to 1, then only one task will be processed at a time, utilizing just 4 GPUs.
### How do I control the number of GPUs that OpenCompass occupies?
Currently, there isn't a direct method to specify the number of GPUs OpenCompass can utilize. However, the following are some indirect strategies:
**If evaluating locally:**
You can limit OpenCompass's GPU access by setting the `CUDA_VISIBLE_DEVICES` environment variable. For instance, using `CUDA_VISIBLE_DEVICES=0,1,2,3 python run.py ...` will only expose the first four GPUs to OpenCompass, ensuring it uses no more than these four GPUs simultaneously.
**If using Slurm or DLC:**
Although OpenCompass doesn't have direct access to the resource pool, you can adjust the `--max-num-workers` parameter to restrict the number of evaluation tasks being submitted simultaneously. This will indirectly manage the number of GPUs that OpenCompass employs. For instance, if each task requires 4 GPUs, and you wish to allocate a total of 8 GPUs, then you should set `--max-num-workers` to 2.
## Network
### My tasks failed with error: `('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer'))` or `urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='cdn-lfs.huggingface.co', port=443)`
Because of HuggingFace's implementation, OpenCompass requires network (especially the connection to HuggingFace) for the first time it loads some datasets and models. Additionally, it connects to HuggingFace each time it is launched. For a successful run, you may:
- Work behind a proxy by specifying the environment variables `http_proxy` and `https_proxy`;
- Use the cache files from other machines. You may first run the experiment on a machine that has access to the Internet, and then copy the cached files to the offline one. The cached files are located at `~/.cache/huggingface/` by default ([doc](https://huggingface.co/docs/datasets/cache#cache-directory)). When the cached files are ready, you can start the evaluation in offline mode:
```python
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 HF_EVALUATE_OFFLINE=1 python run.py ...
```
With which no more network connection is needed for the evaluation. However, error will still be raised if the files any dataset or model is missing from the cache.
### My server cannot connect to the Internet, how can I use OpenCompass?
Use the cache files from other machines, as suggested in the answer to [Network-Q1](#my-tasks-failed-with-error-connection-aborted-connectionreseterror104-connection-reset-by-peer-or-urllib3exceptionsmaxretryerror-httpsconnectionpoolhostcdn-lfshuggingfaceco-port443).
### In evaluation phase, I'm running into an error saying that `FileNotFoundError: Couldn't find a module script at opencompass/accuracy.py. Module 'accuracy' doesn't exist on the Hugging Face Hub either.`
HuggingFace tries to load the metric (e.g. `accuracy`) as an module online, and it could fail if the network is unreachable. Please refer to [Network-Q1](#my-tasks-failed-with-error-connection-aborted-connectionreseterror104-connection-reset-by-peer-or-urllib3exceptionsmaxretryerror-httpsconnectionpoolhostcdn-lfshuggingfaceco-port443) for guidelines to fix your network issue.
The issue has been fixed in the latest version of OpenCompass, so you might also consider pull from the latest version.
## Efficiency
### Why does OpenCompass partition each evaluation request into tasks?
Given the extensive evaluation time and the vast quantity of datasets, conducting a comprehensive linear evaluation on LLM models can be immensely time-consuming. To address this, OpenCompass divides the evaluation request into multiple independent "tasks". These tasks are then dispatched to various GPU groups or nodes, achieving full parallelism and maximizing the efficiency of computational resources.
### How does task partitioning work?
Each task in OpenCompass represents a combination of specific model(s) and portions of the dataset awaiting evaluation. OpenCompass offers a variety of task partitioning strategies, each tailored for different scenarios. During the inference stage, the prevalent partitioning method seeks to balance task size, or computational cost. This cost is heuristically derived from the dataset size and the type of inference.
### Why does it take more time to evaluate LLM models on OpenCompass?
There is a tradeoff between the number of tasks and the time to load the model. For example, if we partition an request that evaluates a model against a dataset into 100 tasks, the model will be loaded 100 times in total. When resources are abundant, these 100 tasks can be executed in parallel, so the additional time spent on model loading can be ignored. However, if resources are limited, these 100 tasks will operate more sequentially, and repeated loadings can become a bottleneck in execution time.
Hence, if users find that the number of tasks greatly exceeds the available GPUs, we advise setting the `--max-partition-size` to a larger value.