OpenCompass/opencompass/tasks/subjective_eval.py

282 lines
11 KiB
Python
Raw Normal View History

2023-10-13 19:50:54 +08:00
import argparse
import copy
import fnmatch
import os.path as osp
import random
import time
from typing import List, Optional, Union
import mmengine
from mmengine.config import Config, ConfigDict
from mmengine.utils import mkdir_or_exist
from opencompass.registry import ICL_EVALUATORS, MODELS, TEXT_POSTPROCESSORS
from opencompass.tasks.base import BaseTask
from opencompass.utils import (build_dataset_from_cfg, dataset_abbr_from_cfg,
get_infer_output_path, get_logger,
model_abbr_from_cfg, task_abbr_from_cfg)
2023-10-13 19:50:54 +08:00
class SubjectiveEvalTask(BaseTask):
"""Subjective Evaluation Task.
This task is used to evaluate the metric between predictions and
references.
Args:
cfg (ConfigDict): The configuration of the entire evaluation task.
"""
name_prefix = 'SubjectiveEval'
log_subdir = 'logs/eval'
output_subdir = 'results'
def __init__(self, cfg: ConfigDict):
super().__init__(cfg)
self.logger = get_logger()
judge_cfg = cfg.eval.runner.task.get('judge_cfg', {})
if type(judge_cfg) != ConfigDict:
print('*' * 100)
print('Due to different Judge model needs different summarizer and'
" prompts, we don't support multi judge model evaluation at "
'one time, please do not use list to set your judge cfg, jus'
't use a dict or list[0] should be fine. If you want to eval'
'uation multi judge model in one script, we suggest you to u'
'se a bash or bat script to start multi configs evaluation!')
print('*' * 100)
assert type(judge_cfg) == ConfigDict
2023-10-13 19:50:54 +08:00
run_cfg = judge_cfg.get('run_cfg', {})
self.num_gpus = run_cfg.get('num_gpus', 0)
self.num_procs = run_cfg.get('num_procs', 1)
self.judge_cfg = copy.deepcopy(judge_cfg)
def get_command(self, cfg_path, template):
"""Get the command template for the task.
Args:
cfg_path (str): The path to the config file of the task.
template (str): The template which have '{task_cmd}' to format
the command.
"""
script_path = __file__
if self.num_gpus > 0:
port = random.randint(12000, 32000)
command = (f'torchrun --master_port={port} '
f'--nproc_per_node {self.num_procs} '
f'{script_path} {cfg_path}')
else:
command = f'python {script_path} {cfg_path}'
return template.format(task_cmd=command)
def run(self):
# model_cfg can be a list of model configs
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
for dataset_cfg in dataset_cfgs:
# Load Dataset
eval_cfg = dataset_cfg.get('eval_cfg')
output_column = dataset_cfg['reader_cfg']['output_column']
if type(model_cfg) == ConfigDict:
model_cfg = (model_cfg, )
model_cfg += ({
'abbr':
'judged-by--' + model_abbr_from_cfg(self.judge_cfg)
}, )
2023-10-13 19:50:54 +08:00
out_path = get_infer_output_path(
model_cfg, dataset_cfg, osp.join(self.work_dir, 'results'))
if osp.exists(out_path):
continue
self._score(model_cfg, dataset_cfg, eval_cfg, output_column)
def _load_model_pred(self, model_cfg: Union[ConfigDict, List[ConfigDict]],
dataset_cfg: ConfigDict,
eval_cfg: ConfigDict) -> Union[None, List[str]]:
if isinstance(model_cfg, (tuple, list)):
return [
self._load_model_pred(m, dataset_cfg, eval_cfg)
for m in model_cfg
]
# Load predictions
filename = get_infer_output_path(
model_cfg, dataset_cfg, osp.join(self.work_dir, 'predictions'))
# in case the prediction is partial
root, ext = osp.splitext(filename)
partial_filename = root + '_0' + ext
pred_strs = None
2023-12-23 20:06:53 +08:00
if not osp.exists(osp.realpath(filename)) and not osp.exists(
2023-10-13 19:50:54 +08:00
osp.realpath(partial_filename)):
2023-12-23 20:06:53 +08:00
return {'error': 'No predictions found.'}
else:
2023-10-13 19:50:54 +08:00
if osp.exists(osp.realpath(filename)):
preds = mmengine.load(filename)
pred_strs = [
preds[str(i)]['prediction'] for i in range(len(preds))
]
else:
filename = partial_filename
pred_strs = []
i = 1
while osp.exists(osp.realpath(filename)):
preds = mmengine.load(filename)
filename = root + f'_{i}' + ext
i += 1
pred_strs += [
preds[str(i)]['prediction'] for i in range(len(preds))
]
if ('pred_role' in eval_cfg and 'meta_template' in model_cfg
and not MODELS.get(model_cfg['type']).is_api):
# Create a prompt template for role config parsing
from opencompass.models.base import LMTemplateParser
parser = LMTemplateParser(model_cfg['meta_template'])
role = parser.roles[eval_cfg['pred_role']]
pred_strs = [
self._extract_role_pred(pred, role.get('begin', None),
role.get('end', None))
for pred in pred_strs
]
# Postprocess predictions if necessary
ds_abbr = dataset_abbr_from_cfg(dataset_cfg)
model_postprocessors = model_cfg.get('pred_postprocessor', {})
pred_postprocessor = None
for pattern in model_postprocessors.keys():
if fnmatch.fnmatch(ds_abbr, pattern):
pred_postprocessor = model_postprocessors[pattern]
break
if 'pred_postprocessor' in eval_cfg or pred_postprocessor:
kwargs = pred_postprocessor or eval_cfg['pred_postprocessor']
proc = TEXT_POSTPROCESSORS.get(kwargs.pop('type'))
pred_strs = [proc(s, **kwargs) for s in pred_strs]
return {
'model_name': model_abbr_from_cfg(model_cfg),
'model_preds': pred_strs
}
2023-10-13 19:50:54 +08:00
def _score(self, model_cfg, dataset_cfg, eval_cfg, output_column):
test_set = build_dataset_from_cfg(dataset_cfg).test
# Postprocess dataset if necessary
if 'dataset_postprocessor' in eval_cfg:
proc = TEXT_POSTPROCESSORS.get(
eval_cfg['dataset_postprocessor']['type'])
def postprocess(sample):
s = sample[output_column]
sample[output_column] = proc(s)
return sample
test_set = test_set.map(postprocess)
# Get out_path
out_path = get_infer_output_path(model_cfg, dataset_cfg,
osp.join(self.work_dir, 'results'))
new_model_cfg = []
for m_cfg in model_cfg:
if len(m_cfg) > 1:
new_model_cfg.append(m_cfg)
if len(new_model_cfg) == 1:
new_model_cfg = new_model_cfg[0]
model_preds = self._load_model_pred(new_model_cfg, dataset_cfg,
eval_cfg)
if not self.judge_cfg:
raise ValueError('missing "eval.runner.task.judge_cfg"')
eval_cfg['evaluator']['judge_cfg'] = self.judge_cfg
eval_cfg['evaluator']['dataset_cfg'] = dataset_cfg
eval_cfg['evaluator']['output_path'] = out_path
2023-10-13 19:50:54 +08:00
icl_evaluator = ICL_EVALUATORS.build(eval_cfg['evaluator'])
references = (test_set[output_column] if output_column else None)
2023-12-23 20:06:53 +08:00
if 'error' not in model_preds:
result = icl_evaluator.score(predictions=model_preds,
references=references)
else:
result = model_preds
2023-10-13 19:50:54 +08:00
if 'error' in result:
self.logger.error(
f'Task {task_abbr_from_cfg(self.cfg)}: {result["error"]}')
return
else:
self.logger.info(
f'Task {task_abbr_from_cfg(self.cfg)}') #: {result}')
2023-10-13 19:50:54 +08:00
# Save result
mkdir_or_exist(osp.split(out_path)[0])
mmengine.dump(result,
open(out_path, 'w', encoding='utf-8'),
file_format='json',
ensure_ascii=False,
indent=4)
def _extract_role_pred(self, s: str, begin_str: Optional[str],
end_str: Optional[str]) -> str:
"""Extract the role prediction from the full prediction string. The
role prediction may be the substring between the begin and end string.
Args:
s (str): Full prediction string.
begin_str (str): The beginning string of the role
end_str (str): The ending string of the role.
Returns:
str: The extracted role prediction.
"""
start = 0
end = len(s)
if begin_str:
begin_idx = s.find(begin_str)
if begin_idx != -1:
start = begin_idx + len(begin_str)
if end_str:
# TODO: Support calling tokenizer for the accurate eos token
# and avoid such hardcode
end_idx = s.find(end_str[:1], start)
if end_idx != -1:
end = end_idx
return s[start:end]
def get_output_paths(self, file_extension: str = 'json') -> List[str]:
"""Get the paths to the output files. Every file should exist if the
task succeeds.
Args:
file_extension (str): The file extension of the output files.
Default: 'json'.
"""
output_paths = []
for model, datasets in zip(self.model_cfgs, self.dataset_cfgs):
for dataset in datasets:
if type(model) == ConfigDict:
model = (model, )
model += ({
'abbr':
'judged-by--' + model_abbr_from_cfg(self.judge_cfg)
}, )
output_paths.append(
get_infer_output_path(
model, dataset,
osp.join(self.work_dir, self.output_subdir),
file_extension))
return output_paths
2023-10-13 19:50:54 +08:00
def parse_args():
parser = argparse.ArgumentParser(description='Score Calculator')
parser.add_argument('config', help='Config file path')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
cfg = Config.fromfile(args.config)
start_time = time.time()
inferencer = SubjectiveEvalTask(cfg)
inferencer.run()
end_time = time.time()
get_logger().info(f'time elapsed: {end_time - start_time:.2f}s')