2023-07-05 10:33:12 +08:00
|
|
|
import argparse
|
2023-10-27 20:31:22 +08:00
|
|
|
import copy
|
2023-08-25 16:12:21 +08:00
|
|
|
import fnmatch
|
2023-10-27 20:31:22 +08:00
|
|
|
import math
|
2023-07-05 10:33:12 +08:00
|
|
|
import os.path as osp
|
2023-10-27 20:31:22 +08:00
|
|
|
import statistics
|
2023-07-05 10:33:12 +08:00
|
|
|
import time
|
2023-07-28 17:29:37 +08:00
|
|
|
from collections import Counter
|
2023-09-22 15:28:22 +08:00
|
|
|
from inspect import signature
|
2023-10-27 17:16:22 +08:00
|
|
|
from shutil import which
|
2023-10-27 20:31:22 +08:00
|
|
|
from typing import List, Optional
|
2023-07-05 10:33:12 +08:00
|
|
|
|
|
|
|
import mmengine
|
|
|
|
from mmengine.config import Config, ConfigDict
|
|
|
|
from mmengine.utils import mkdir_or_exist
|
|
|
|
|
|
|
|
from opencompass.registry import (ICL_EVALUATORS, MODELS, TASKS,
|
|
|
|
TEXT_POSTPROCESSORS)
|
|
|
|
from opencompass.tasks.base import BaseTask
|
2023-08-25 16:12:21 +08:00
|
|
|
from opencompass.utils import (build_dataset_from_cfg, dataset_abbr_from_cfg,
|
|
|
|
get_infer_output_path, get_logger,
|
|
|
|
task_abbr_from_cfg)
|
2023-07-05 10:33:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
@TASKS.register_module(force=(__name__ == '__main__')) # A hack for script run
|
|
|
|
class OpenICLEvalTask(BaseTask):
|
|
|
|
"""OpenICL Evaluation Task.
|
|
|
|
|
|
|
|
This task is used to evaluate the metric between predictions and
|
|
|
|
references.
|
|
|
|
"""
|
|
|
|
|
|
|
|
name_prefix = 'OpenICLEval'
|
|
|
|
log_subdir = 'logs/eval'
|
|
|
|
output_subdir = 'results'
|
|
|
|
|
|
|
|
def __init__(self, cfg: ConfigDict):
|
|
|
|
super().__init__(cfg)
|
2023-10-13 19:50:54 +08:00
|
|
|
self.num_gpus = 0
|
2023-07-05 10:33:12 +08:00
|
|
|
self.logger = get_logger()
|
2023-10-27 20:31:22 +08:00
|
|
|
self.dump_details = cfg.get('eval', {}).get('runner', {}).get(
|
|
|
|
'task', {}).get('dump_details', False)
|
2023-07-05 10:33:12 +08:00
|
|
|
|
2023-07-07 17:25:56 +08:00
|
|
|
def get_command(self, cfg_path, template):
|
|
|
|
script_path = __file__
|
2023-10-27 17:16:22 +08:00
|
|
|
python = 'python3' if which('python3') else 'python'
|
|
|
|
command = f'{python} {script_path} {cfg_path}'
|
2023-07-07 17:25:56 +08:00
|
|
|
return template.format(task_cmd=command)
|
2023-07-05 10:33:12 +08:00
|
|
|
|
|
|
|
def run(self):
|
|
|
|
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
|
|
|
|
for dataset_cfg in dataset_cfgs:
|
|
|
|
self.model_cfg = model_cfg
|
|
|
|
self.dataset_cfg = dataset_cfg
|
|
|
|
|
|
|
|
# Load Dataset
|
|
|
|
self.eval_cfg = self.dataset_cfg.get('eval_cfg')
|
|
|
|
self.output_column = dataset_cfg['reader_cfg']['output_column']
|
|
|
|
|
2023-08-25 16:12:21 +08:00
|
|
|
# overwrite postprocessor if the model has specified one
|
|
|
|
ds_abbr = dataset_abbr_from_cfg(self.dataset_cfg)
|
|
|
|
model_postprocessors = self.model_cfg.get(
|
|
|
|
'pred_postprocessor', {})
|
|
|
|
for pattern in model_postprocessors.keys():
|
|
|
|
if fnmatch.fnmatch(ds_abbr, pattern):
|
|
|
|
self.eval_cfg[
|
|
|
|
'pred_postprocessor'] = model_postprocessors[
|
|
|
|
pattern] # noqa
|
|
|
|
break
|
|
|
|
|
2023-07-05 10:33:12 +08:00
|
|
|
out_path = get_infer_output_path(
|
|
|
|
self.model_cfg, self.dataset_cfg,
|
|
|
|
osp.join(self.work_dir, 'results'))
|
|
|
|
if osp.exists(out_path):
|
|
|
|
continue
|
|
|
|
self._score()
|
|
|
|
|
|
|
|
def _score(self):
|
|
|
|
test_set = build_dataset_from_cfg(self.dataset_cfg).test
|
|
|
|
# Postprocess dataset if necessary
|
|
|
|
if 'dataset_postprocessor' in self.eval_cfg:
|
2023-09-22 15:28:22 +08:00
|
|
|
proc = self.eval_cfg['dataset_postprocessor']['type']
|
|
|
|
if isinstance(proc, str):
|
|
|
|
proc = TEXT_POSTPROCESSORS.get(proc)
|
2023-07-05 10:33:12 +08:00
|
|
|
|
|
|
|
def postprocess(sample):
|
|
|
|
s = sample[self.output_column]
|
|
|
|
sample[self.output_column] = proc(s)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
test_set = test_set.map(postprocess)
|
|
|
|
|
|
|
|
# Load predictions
|
|
|
|
filename = get_infer_output_path(
|
|
|
|
self.model_cfg, self.dataset_cfg,
|
|
|
|
osp.join(self.work_dir, 'predictions'))
|
|
|
|
# in case the prediction is partial
|
|
|
|
root, ext = osp.splitext(filename)
|
|
|
|
partial_filename = root + '_0' + ext
|
|
|
|
|
2023-07-28 17:29:37 +08:00
|
|
|
# Get sc_size if use Self-Consistency
|
|
|
|
sc_size = self.eval_cfg.get('sc_size')
|
|
|
|
|
2023-07-05 10:33:12 +08:00
|
|
|
if not osp.exists(osp.realpath(filename)) and not osp.exists(
|
|
|
|
osp.realpath(partial_filename)):
|
|
|
|
result = {'error': 'No predictions found.'}
|
|
|
|
else:
|
|
|
|
if osp.exists(osp.realpath(filename)):
|
|
|
|
preds = mmengine.load(filename)
|
2023-09-22 15:28:22 +08:00
|
|
|
preds = [preds[str(i)] for i in range(len(preds))]
|
2023-07-05 10:33:12 +08:00
|
|
|
else:
|
|
|
|
filename = partial_filename
|
2023-09-22 15:28:22 +08:00
|
|
|
preds = []
|
2023-07-05 10:33:12 +08:00
|
|
|
i = 1
|
|
|
|
while osp.exists(osp.realpath(filename)):
|
2023-09-22 15:28:22 +08:00
|
|
|
sub_preds = mmengine.load(filename)
|
|
|
|
preds.extend(
|
|
|
|
[sub_preds[str(i)] for i in range(len(sub_preds))])
|
2023-07-05 10:33:12 +08:00
|
|
|
filename = root + f'_{i}' + ext
|
|
|
|
i += 1
|
2023-10-27 20:31:22 +08:00
|
|
|
pred_dicts = copy.deepcopy(preds)
|
2023-09-22 17:42:08 +08:00
|
|
|
preds = {k: [pred.get(k) for pred in preds] for k in preds[0]}
|
2023-09-22 15:28:22 +08:00
|
|
|
|
|
|
|
pred_strs = preds.pop('prediction')
|
2023-11-16 21:22:06 +08:00
|
|
|
pred_list_flag = isinstance(pred_strs[0], list)
|
2023-07-05 10:33:12 +08:00
|
|
|
if ('pred_role' in self.eval_cfg
|
|
|
|
and 'meta_template' in self.model_cfg
|
|
|
|
and not MODELS.get(self.model_cfg['type']).is_api):
|
|
|
|
# Create a prompt template for role config parsing
|
|
|
|
from opencompass.models.base import LMTemplateParser
|
|
|
|
parser = LMTemplateParser(self.model_cfg['meta_template'])
|
|
|
|
role = parser.roles[self.eval_cfg['pred_role']]
|
2023-07-28 17:29:37 +08:00
|
|
|
if sc_size is not None:
|
2023-11-16 21:22:06 +08:00
|
|
|
assert pred_list_flag, (
|
|
|
|
'The prediction for Self-Consistency'
|
|
|
|
'must be list.')
|
|
|
|
if pred_list_flag:
|
2023-11-24 13:43:26 +08:00
|
|
|
pred_strs = [[
|
|
|
|
self._extract_role_pred(_pred, role.get('begin', None),
|
|
|
|
role.get('end', None))
|
|
|
|
for _pred in pred
|
|
|
|
] for pred in pred_strs]
|
2023-07-28 17:29:37 +08:00
|
|
|
else:
|
|
|
|
pred_strs = [
|
|
|
|
self._extract_role_pred(pred, role.get('begin', None),
|
|
|
|
role.get('end', None))
|
|
|
|
for pred in pred_strs
|
|
|
|
]
|
2023-07-05 10:33:12 +08:00
|
|
|
|
|
|
|
# Postprocess predictions if necessary
|
|
|
|
if 'pred_postprocessor' in self.eval_cfg:
|
2023-08-11 18:41:12 +08:00
|
|
|
kwargs = self.eval_cfg['pred_postprocessor']
|
2023-09-22 15:28:22 +08:00
|
|
|
proc = kwargs.pop('type')
|
|
|
|
if isinstance(proc, str):
|
|
|
|
proc = TEXT_POSTPROCESSORS.get(proc)
|
2023-11-16 21:22:06 +08:00
|
|
|
if pred_list_flag:
|
2023-08-11 18:41:12 +08:00
|
|
|
pred_strs = [[proc(s, **kwargs) for s in preds]
|
2023-08-10 16:40:32 +08:00
|
|
|
for preds in pred_strs]
|
2023-07-28 17:29:37 +08:00
|
|
|
else:
|
2023-08-11 18:41:12 +08:00
|
|
|
pred_strs = [proc(s, **kwargs) for s in pred_strs]
|
2023-07-05 10:33:12 +08:00
|
|
|
|
2023-08-10 16:40:32 +08:00
|
|
|
# Get majority voting predictions if use self-consistency
|
|
|
|
if sc_size is not None:
|
|
|
|
pred_strs = [
|
|
|
|
Counter(s).most_common(1)[0][0] for s in pred_strs
|
|
|
|
]
|
|
|
|
|
2023-07-05 10:33:12 +08:00
|
|
|
icl_evaluator = ICL_EVALUATORS.build(self.eval_cfg['evaluator'])
|
2023-10-27 20:31:22 +08:00
|
|
|
|
2023-09-22 15:28:22 +08:00
|
|
|
preds['predictions'] = pred_strs
|
2023-09-22 15:42:31 +08:00
|
|
|
preds['references'] = (test_set[self.output_column]
|
|
|
|
if self.output_column else None)
|
2023-11-23 16:45:47 +08:00
|
|
|
preds['test_set'] = test_set
|
2023-09-22 15:28:22 +08:00
|
|
|
preds = {
|
|
|
|
k: preds[k]
|
|
|
|
for k in signature(icl_evaluator.score).parameters
|
|
|
|
}
|
|
|
|
result = icl_evaluator.score(**preds)
|
2023-07-05 10:33:12 +08:00
|
|
|
|
2023-10-27 20:31:22 +08:00
|
|
|
if self.dump_details:
|
|
|
|
try:
|
|
|
|
details = result.pop('details', None)
|
|
|
|
result['details'] = self.format_details(
|
|
|
|
pred_strs, test_set[self.output_column], details,
|
|
|
|
pred_dicts)
|
|
|
|
result['type'] = result['details'].pop('type', None)
|
|
|
|
|
|
|
|
if 'PPL' in str(
|
|
|
|
self.dataset_cfg.infer_cfg.inferencer.type):
|
|
|
|
result['correct_bpb'], result[
|
|
|
|
'incorrect_bpb'] = self.calculate_bpb(pred_dicts)
|
|
|
|
else:
|
|
|
|
result['incorrect_bpb'] = result['correct_bpb'] = -1
|
|
|
|
except Exception:
|
|
|
|
result['incorrect_bpb'] = result['correct_bpb'] = -1
|
|
|
|
else:
|
|
|
|
result.pop('details', None)
|
|
|
|
|
2023-07-05 10:33:12 +08:00
|
|
|
if 'error' in result:
|
|
|
|
self.logger.error(
|
|
|
|
f'Task {task_abbr_from_cfg(self.cfg)}: {result["error"]}')
|
|
|
|
return
|
2023-07-17 14:26:30 +08:00
|
|
|
else:
|
2023-10-27 20:31:22 +08:00
|
|
|
result_wo_details = {
|
|
|
|
i: result[i]
|
|
|
|
for i in result if i != 'details'
|
|
|
|
}
|
|
|
|
self.logger.info(
|
|
|
|
f'Task {task_abbr_from_cfg(self.cfg)}: {result_wo_details}')
|
2023-07-05 10:33:12 +08:00
|
|
|
|
|
|
|
# Save result
|
2023-10-13 19:50:54 +08:00
|
|
|
out_path = get_infer_output_path(self.model_cfg, self.dataset_cfg,
|
|
|
|
osp.join(self.work_dir, 'results'))
|
2023-07-05 10:33:12 +08:00
|
|
|
mkdir_or_exist(osp.split(out_path)[0])
|
2023-10-27 20:31:22 +08:00
|
|
|
mmengine.dump(result, out_path, ensure_ascii=False, indent=4)
|
2023-07-05 10:33:12 +08:00
|
|
|
|
|
|
|
def _extract_role_pred(self, s: str, begin_str: Optional[str],
|
|
|
|
end_str: Optional[str]) -> str:
|
|
|
|
"""Extract the role prediction from the full prediction string. The
|
|
|
|
role prediction may be the substring between the begin and end string.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
s (str): Full prediction string.
|
|
|
|
begin_str (str): The beginning string of the role
|
|
|
|
end_str (str): The ending string of the role.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
str: The extracted role prediction.
|
|
|
|
"""
|
|
|
|
start = 0
|
|
|
|
end = len(s)
|
|
|
|
|
|
|
|
if begin_str:
|
|
|
|
begin_idx = s.find(begin_str)
|
|
|
|
if begin_idx != -1:
|
|
|
|
start = begin_idx + len(begin_str)
|
|
|
|
|
|
|
|
if end_str:
|
|
|
|
# TODO: Support calling tokenizer for the accurate eos token
|
|
|
|
# and avoid such hardcode
|
2023-10-13 19:52:20 +08:00
|
|
|
end_idx = s.find(end_str, start)
|
2023-07-05 10:33:12 +08:00
|
|
|
if end_idx != -1:
|
|
|
|
end = end_idx
|
|
|
|
|
|
|
|
return s[start:end]
|
|
|
|
|
2023-10-27 20:31:22 +08:00
|
|
|
def format_details(self, predictions, references, details, pred_dicts):
|
|
|
|
"""This function is responsible for formatting prediction details.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
predictions (list): The prediction list.
|
|
|
|
references (list): The reference list.
|
|
|
|
details (list): Contains the 'pred' 'answer' and 'correct' for each
|
|
|
|
sample. Such as `[{'pred': '光荣和ωforce',
|
|
|
|
'answers': ['光荣和ω-force', '光荣和ωforce'], 'correct': True}]`
|
|
|
|
pred_dicts (list): Contains a list of samples with the original
|
|
|
|
prompts. Such as
|
|
|
|
`[{'origin_prompt': '根据文章回答问题。你的答案应该尽可能3》…………',
|
|
|
|
'prediction': ' 光荣和ω-force\n', 'gold': ['光荣和ω-force']}]`
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: The formatted prediction details.
|
|
|
|
"""
|
|
|
|
results = {}
|
|
|
|
for i in range(len(predictions)):
|
|
|
|
ppl_flag = False
|
|
|
|
result = {}
|
|
|
|
origin_prediction = copy.deepcopy(pred_dicts[i])
|
|
|
|
origin_prediction.pop('in-context examples', None)
|
|
|
|
origin_prediction.pop('prediction', None)
|
|
|
|
keys = copy.deepcopy(list(origin_prediction.keys()))
|
|
|
|
for key in keys:
|
|
|
|
if key.startswith('label:'):
|
|
|
|
ppl_flag = True
|
|
|
|
origin_prediction[key].pop('testing input', None)
|
|
|
|
new_key = key.replace('label: ', '')
|
|
|
|
origin_prediction[new_key] = origin_prediction.pop(key)
|
|
|
|
if ppl_flag:
|
|
|
|
results['type'] = 'PPL'
|
|
|
|
result['origin_prediction'] = origin_prediction
|
|
|
|
result['predictions'] = str(predictions[i])
|
|
|
|
result['references'] = str(references[i])
|
|
|
|
result['correct'] = str(predictions[i]) == str(references[i])
|
|
|
|
else:
|
|
|
|
results['type'] = 'GEN'
|
|
|
|
result['prompt'] = origin_prediction['origin_prompt']
|
|
|
|
result['origin_prediction'] = pred_dicts[i]['prediction']
|
|
|
|
result['predictions'] = details[i]['pred']
|
2023-11-13 15:15:34 +08:00
|
|
|
result['references'] = details[i]['answer']
|
2023-10-27 20:31:22 +08:00
|
|
|
result['correct'] = details[i]['correct']
|
|
|
|
results[str(i)] = result
|
|
|
|
return results
|
|
|
|
|
|
|
|
def calculate_bpb(self, pred_dicts: List):
|
|
|
|
"""This function is used to calculate the BPB (Bits Per Byte) for the
|
|
|
|
data. The correct BPB is obtained directly from the values in the
|
|
|
|
'predictions' file. The incorrect BPB is the average of the remaining
|
|
|
|
BPB values for each sample under different labels after subtracting the
|
|
|
|
correct BPB. The calculation of BPB (Bits Per Byte) is similar to PPL,
|
|
|
|
with the difference that it computes the additional bits needed on
|
|
|
|
average, in terms of character length, to encode the true sequence
|
|
|
|
based on the predictions. This calculation involves applying a
|
|
|
|
weighting factor based on the ratio of words to characters.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pred_dicts (list): Contains a list of samples with each options
|
|
|
|
and BPB scores.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
dict: Contains correct and incorrect bpb.
|
|
|
|
"""
|
|
|
|
incorrect_bpb_list = []
|
|
|
|
bpb_list = []
|
|
|
|
for pred_dict in pred_dicts:
|
|
|
|
preds = {
|
|
|
|
key: value
|
|
|
|
for key, value in pred_dict.items()
|
|
|
|
if key.startswith('label: ')
|
|
|
|
}
|
|
|
|
values = []
|
|
|
|
for item in preds.items():
|
|
|
|
values.append(item[1])
|
|
|
|
bpbs = [value['BPB'] for value in values]
|
|
|
|
incorrect_bpb_list.append(
|
|
|
|
(sum(bpbs) - min(bpbs)) / (len(bpbs) - 1))
|
2023-11-13 15:15:34 +08:00
|
|
|
bpb_list.append(min(bpbs))
|
2023-10-27 20:31:22 +08:00
|
|
|
|
|
|
|
def filters(origins):
|
|
|
|
targets = [target for target in origins if not math.isnan(target)]
|
|
|
|
return targets
|
|
|
|
|
|
|
|
mean_incorrect = statistics.mean(filters(incorrect_bpb_list))
|
|
|
|
mean_correct = statistics.mean(filters(bpb_list))
|
|
|
|
return 100 * mean_correct, 100 * mean_incorrect
|
|
|
|
|
2023-07-05 10:33:12 +08:00
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser(description='Score Calculator')
|
|
|
|
parser.add_argument('config', help='Config file path')
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
args = parse_args()
|
|
|
|
cfg = Config.fromfile(args.config)
|
|
|
|
start_time = time.time()
|
|
|
|
inferencer = OpenICLEvalTask(cfg)
|
|
|
|
inferencer.run()
|
|
|
|
end_time = time.time()
|
|
|
|
get_logger().info(f'time elapsed: {end_time - start_time:.2f}s')
|