OpenCompass/opencompass/partitioners/base.py

123 lines
4.3 KiB
Python
Raw Normal View History

2023-07-04 21:34:55 +08:00
from abc import abstractmethod
from copy import deepcopy
2023-10-27 20:31:22 +08:00
from typing import Dict, List, Optional
2023-07-04 21:34:55 +08:00
from mmengine.config import ConfigDict
from opencompass.utils import get_logger, task_abbr_from_cfg
class BasePartitioner:
"""Base class for partitioners. A partitioner is responsible for
partitioning the config into tasks.
Args:
out_dir (str): The output directory of tasks.
2023-10-27 20:31:22 +08:00
keep_keys (Optional[List[str]], optional): The keys to be kept from the
experiment config to the task config. Defaults to None. If None,
the following keys will be kept:
- eval.runner.task.judge_cfg
- eval.runner.task.dump_details
2023-07-04 21:34:55 +08:00
"""
2023-10-27 20:31:22 +08:00
def __init__(self, out_dir: str, keep_keys: Optional[List[str]] = None):
2023-07-04 21:34:55 +08:00
self.logger = get_logger()
self.out_dir = out_dir
2023-10-27 20:31:22 +08:00
if keep_keys is None:
self.keep_keys = [
'eval.runner.task.judge_cfg',
'eval.runner.task.dump_details',
]
else:
self.keep_keys = keep_keys
2023-07-04 21:34:55 +08:00
def __call__(self, cfg: ConfigDict) -> List[Dict]:
"""Generate tasks from config. Each task is defined as a
dict and will run independently as a unit. Its structure is as
follows:
.. code-block:: python
{
'models': [], # a list of model configs
'datasets': [[]], # a nested list of dataset configs, each
list corresponds to a model
'work_dir': '', # the work dir
}
Args:
cfg (ConfigDict): The config dict, containing "models", "dataset"
and "work_dir" keys.
Returns:
List[Dict]: A list of tasks.
"""
cfg = deepcopy(cfg)
models = cfg['models']
datasets = cfg['datasets']
work_dir = cfg['work_dir']
add_cfg = {}
for k in self.keep_keys:
try:
key_chain = k.split('.')
ori_ptr = cfg
tgt_ptr = add_cfg
for key in key_chain[:-1]:
ori_ptr = ori_ptr[key]
if key not in tgt_ptr:
tgt_ptr[key] = {}
tgt_ptr = tgt_ptr[key]
tgt_ptr[key_chain[-1]] = ori_ptr[key_chain[-1]]
2023-09-22 17:30:54 +08:00
except Exception:
2023-10-27 20:31:22 +08:00
self.logger.debug(f'Key {k} not found in config, ignored.')
self.logger.debug(f'Additional config: {add_cfg}')
tasks = self.partition(models,
datasets,
work_dir,
self.out_dir,
add_cfg=add_cfg)
2023-07-04 21:34:55 +08:00
self.logger.info(f'Partitioned into {len(tasks)} tasks.')
for i, task in enumerate(tasks):
self.logger.debug(f'Task {i}: {task_abbr_from_cfg(task)}')
return tasks
@abstractmethod
def partition(self,
models: List[ConfigDict],
datasets: List[ConfigDict],
work_dir: str,
out_dir: str,
add_cfg: Dict = {}) -> List[Dict]:
2023-07-04 21:34:55 +08:00
"""Partition model-dataset pairs into tasks. Each task is defined as a
dict and will run independently as a unit. Its structure is as
follows:
.. code-block:: python
{
'models': [], # a list of model configs
'datasets': [[]], # a nested list of dataset configs, each
list corresponds to a model
'work_dir': '', # the work dir
**add_cfg # other keys to be added in the config
2023-07-04 21:34:55 +08:00
}
Args:
models (List[ConfigDict]): A list of model configs.
datasets (List[ConfigDict]): A list of dataset configs.
work_dir (str): The work dir for the task.
out_dir (str): The full output path for the task, intended for
Partitioners to check whether the task is finished via the
existency of result file in this directory.
add_cfg (dict): Other common keys to be added in the task config,
used to share the same config among tasks. Defaults to {}.
2023-07-04 21:34:55 +08:00
Returns:
List[Dict]: A list of tasks.
"""