OpenCompass/opencompass/datasets/cibench.py

288 lines
11 KiB
Python
Raw Normal View History

import json
import os
import os.path as osp
import re
from typing import List, Optional
import numpy as np
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
def load_experiment(file: str) -> dict:
"""Load single experiment file with solutions."""
with open(file, 'r') as f:
notebook = json.load(f)
example = notebook['cells']
questions = []
outputs = []
tags = []
for cell in example:
if cell['cell_type'] == 'markdown':
text = ''.join(cell['source'])
# append the formatted text
questions.append(text)
elif cell['cell_type'] == 'code':
if cell['outputs'] and 'data' in cell['outputs'][-1]:
if 'image/png' in cell['outputs'][-1]['data']:
# skip vis temporarily due to lack of evaluation
tags.append('vis')
outputs.append(
cell['outputs'][-1]['data']['image/png'])
elif 'text/plain' in cell['outputs'][-1]['data']:
tags.append('general')
outputs.append(''.join(
cell['outputs'][-1]['data']['text/plain']))
else:
tags.append('executable')
outputs.append(None)
return dict(
experiment=file,
questions=sum(([
dict(role='user', content=question),
dict(role='assistant', content=output)
] for question, output in zip(questions, outputs)), []),
references=dict(outputs=outputs, tags=tags, experiment=file),
)
@LOAD_DATASET.register_module()
class CIBenchDataset(BaseDataset):
"""Code Interpreter dataset."""
@staticmethod
def load(path: str):
"""Load whole dataset."""
data_list = []
for cwd, dirs, files in os.walk(path):
dirs.sort()
files.sort()
for f in files:
if '.ipynb' in f:
try:
data = load_experiment(os.path.join(cwd, f))
except Exception:
print(f'Error with file {os.path.join(cwd, f)}')
continue
data_list.append(data)
dataset = Dataset.from_list(data_list)
return dataset
class CIBenchEvaluator(BaseEvaluator):
"""Evaluator for CI dataset.
Args:
output_dir (optional, str): The directory to save experiment
files in a markdown or notebook format.
user_data_dir (str): The directory to load local files.
Defaults to 'ENV', which means use environment variable
`USER_DATA_DIR` to get the data dir.
"""
def __init__(self,
output_dir: Optional[str] = None,
user_data_dir: str = 'ENV') -> None:
# TODO: should use work dir for this task.
self.output_dir = output_dir
if user_data_dir == 'ENV':
user_data_dir = os.environ.get('USER_DATA_DIR', '')
self.user_data_dir = user_data_dir
@staticmethod
def valid_step(step):
"""Whether the step is executable and valid."""
# Found the latest code interpreter to determine valid
for action in step[::-1]:
if action['type'] == 'IPythonInterpreter':
if action['errmsg']:
return False
else:
return True
# No code interpreter for this step, reckon as False
return False
@staticmethod
def correct_step(step, target):
"""Whether the step output is correct."""
# Found the latest code interpreter to determine correct
for action in step[::-1]:
if action['type'] == 'IPythonInterpreter':
if action['result']:
try:
pred = action['result']['text']
match = re.search('```\n(.*?)\n```', pred, re.DOTALL)
if match:
out = match.group(1)
return out == target or out in target
except Exception:
return False
# Fall back to False
return False
@staticmethod
def vis_similarity_step(step, target):
"""Whether the step output image has the same structure similarity with
the given images."""
# Found the latest code interpreter to determine correct
import base64
import skimage
for action in step[::-1]:
if action['type'] == 'IPythonInterpreter':
if action['result']:
try:
pred = action['result']['text']
match = re.search(r'!\[fig-[0-9]*\]\((.*?)\)', pred,
re.DOTALL)
if match:
img_pred = match.group(1)
img2 = base64.b64decode(target)
img2 = skimage.io.imread(img2, plugin='imageio')
img1 = skimage.io.imread(img_pred, plugin='imageio')
img1 = skimage.transform.resize(img1, img2.shape[:2])
img1 = 255 * img1
# Convert to integer data type pixels.
img1 = img1.astype(np.uint8)
ssim = skimage.metrics.structural_similarity(
img1, img2, channel_axis=-1)
# mse = skimage.metrics.mean_squared_error(img1, img2)
# ssim greater better
# mse smaller better but has no upper bound
return ssim
except Exception:
return 0
# Fall back to 0
return 0
def save_results(self, origin_prompt, steps):
"""Save the prediction result in a markdown and notebook format."""
def check_jupytext():
"""Check requirements existence."""
from shutil import which
assert which('jupytext'), (
"Please install jupytext use 'pip install jupytext' to ensure"
'the conversion processes.')
check_jupytext()
from opencompass.lagent.actions.ipython_interpreter import extract_code
for idx, (example_origin_prompt,
example_steps) in enumerate(zip(origin_prompt, steps)):
markdown_lines = []
for prompt, step in zip(example_origin_prompt, example_steps):
for action in step[::-1]:
if action['type'] == 'IPythonInterpreter':
valid_action = action
break
# fall back to final action
valid_action = step[-1]
markdown_lines.append(prompt)
markdown_lines.append('\n')
code_text = valid_action['args']['text']
code_text = extract_code(code_text)
code_text = '```python\n' + code_text + '\n```'
markdown_lines.append(code_text)
markdown_lines.append('\n')
md_file = f'experiment{idx}.md'
with open(md_file, 'w') as f:
f.writelines(markdown_lines)
# TODO: be careful for this
# convert markdown to ipynb and exectue with error tolerance
# subprocess.Popen(
# "jupytext --to ipynb --pipe-fmt ipynb "
# "--pipe 'jupyter nbconvert --to ipynb --execute "
# f"--allow-errors --stdin --stdout' {md_file}",
# shell=True)
def set_data_dir(self, work_dir):
"""Set work directory and link data files for save notebook results."""
if self.user_data_dir:
if self.user_data_dir.endswith('/'):
basename = osp.basename(osp.split(self.user_data_dir)[0])
else:
basename = osp.basename(self.user_data_dir)
if not osp.exists(osp.join(self.output_dir, basename)):
os.symlink(self.user_data_dir,
osp.join(self.output_dir, basename))
os.chdir(work_dir)
def unset_data_dir(self, work_dir):
"""Change work directory and keep the symlink."""
os.chdir(work_dir)
def score(self, predictions: List, references: List, steps: List,
origin_prompt: List):
"""Calculate accuracy."""
cwd = os.getcwd()
if self.output_dir:
if not osp.exists(self.output_dir):
os.makedirs(self.output_dir)
self.set_data_dir(self.output_dir)
self.save_results(origin_prompt, steps)
self.unset_data_dir(cwd)
num_cells_list = []
num_general_list = []
passed_list = []
correct_list = []
vis_list = []
for gold, single_steps in zip(references, steps):
tags = gold['tags']
outputs = gold['outputs']
num_cells = len(tags)
num_general = sum([tag == 'general' for tag in tags])
passed = sum([self.valid_step(step) for step in single_steps])
correct = 0
vis_sim = []
for tag, step, output in zip(tags, single_steps, outputs):
if tag == 'general':
correct += self.correct_step(step, output)
elif tag == 'vis':
vis_sim.append(self.vis_similarity_step(step, output))
num_cells_list.append(num_cells)
num_general_list.append(num_general)
passed_list.append(passed)
correct_list.append(correct)
if vis_sim:
vis_list.append(sum(vis_sim) / len(vis_sim))
else:
vis_list.append(-1)
if len([v for v in vis_list if v >= 0]) > 0:
visualize_similarity = sum([v for v in vis_list if v >= 0]) / len(
[v for v in vis_list if v >= 0])
else:
# not valid
visualize_similarity = -1
if sum(num_general_list) > 0:
general_accuracy = sum(correct_list) / sum(num_general_list)
else:
# not valid
general_accuracy = -1
result = dict(
executable_rate=sum(passed_list) / sum(num_cells_list) * 100,
general_accuracy=general_accuracy * 100,
visualize_similarity=visualize_similarity * 100,
num_cells_list=num_cells_list,
num_general_list=num_general_list,
passed_list=passed_list,
correct_list=correct_list,
vis_list=vis_list,
)
return result