OpenCompass/opencompass/evaluator/generic_llm_evaluator.py

139 lines
4.8 KiB
Python
Raw Normal View History

import os.path as osp
import re
from typing import Dict, List, Optional
import mmengine
from mmengine.config import ConfigDict
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.registry import DICT_POSTPROCESSORS, ICL_PROMPT_TEMPLATES
from opencompass.utils import build_dataset_from_cfg, build_model_from_cfg
from opencompass.utils.logging import get_logger
def count_chinese_characters(text):
words = re.findall(r'[\u4e00-\u9fff]', text)
return len(words)
def count_english_words(text):
words = re.findall(r'\b[a-zA-Z]+\b', text)
return len(words)
class GenericLLMEvaluator(BaseEvaluator):
"""Generic LLM evaluator.
Arguments:
prompt_template (ConfigDict): The prompt template for evaluation.
judge_cfg (ConfigDict): The config for Judge LLM.
dataset_cfg (ConfigDict): The config for dataset.
pred_postprocessor (ConfigDict): The config for postprocessor.
dict_postprocessor (ConfigDict): The config for postprocessor,
used for evaluation results dict.
"""
def __init__(
self,
prompt_template: ConfigDict,
judge_cfg: ConfigDict,
dataset_cfg: Optional[ConfigDict] = None,
pred_postprocessor: Optional[ConfigDict] = None,
dict_postprocessor: Optional[ConfigDict] = None,
keep_predictions: bool = False,
) -> None:
self.logger = get_logger()
self.judge_cfg = judge_cfg
self.prompt_template = ICL_PROMPT_TEMPLATES.build(prompt_template)
# Build Dataset
self.dataset_cfg = dataset_cfg
assert dataset_cfg is not None, 'dataset_cfg is None'
self.dict_postprocessor = dict_postprocessor
self.pred_postprocessor = pred_postprocessor
def build_inferencer(self, ):
"""Build LLM Inference."""
output_path = self._out_dir
self.output_path = f'{output_path}.json'
out_dir, out_name = osp.split(output_path)
out_name = f'{out_name}.json'
# Build LLM Inference
max_out_len = self.judge_cfg.get('max_out_len', None)
batch_size = self.judge_cfg.get('batch_size', None)
model = build_model_from_cfg(model_cfg=self.judge_cfg)
self.inferencer = GenInferencer(
model,
max_out_len=max_out_len,
batch_size=batch_size,
output_json_filepath=out_dir,
output_json_filename=out_name,
)
def score(
self,
predictions,
references: Optional[List] = None,
) -> Dict:
"""Apply to single-model scoring."""
# -------------- Build Inferencer ----------------
self.build_inferencer()
# ---------------- Process Predictions ------------------
# For Single Round Dialogue
prediction_dict = {}
prediction_dict['prediction'] = predictions
prediction_dict['obj_gold'] = references
# ---------------- Build Dataset for LLM Judge -----------------
if self.dataset_cfg:
dataset = build_dataset_from_cfg(self.dataset_cfg)
for k, v in prediction_dict.items():
dataset.reader.dataset['test'] = dataset.test.add_column(k, v)
dataset.reader.input_columns.append(k)
if references:
dataset.reader.input_columns.append('reference')
dataset.reader.dataset['test'] = dataset.test.add_column(
'reference', references)
else:
# build a default dataset just for comparison
from opencompass.datasets.lmeval import LMEvalDataset
input_columns = list(prediction_dict.keys())
if references:
input_columns.append('reference')
dataset = LMEvalDataset(
reader_cfg=dict(input_columns=input_columns,
output_column=None,
train_split='test'),
reference=references,
**prediction_dict,
)
dataset.reader.output_column = 'reference'
retriever = ZeroRetriever(dataset)
# ----------------- LLM Judge ----------------
self.inferencer.inference(retriever=retriever,
prompt_template=self.prompt_template)
output = mmengine.load(self.output_path)
return self.postprocess(output)
def postprocess(self, output: Dict) -> Dict:
"""Postprocess output by adding necessary statistics or data into
it."""
if self.dict_postprocessor is None:
return output
else:
kwargs = self.dict_postprocessor
proc = DICT_POSTPROCESSORS.get(kwargs.pop('type'))
return proc(output, self.output_path, **kwargs)