OpenCompass/configs/eval_internlm_flames_chat.py

126 lines
3.4 KiB
Python
Raw Normal View History

from mmengine.config import read_base
from opencompass.models import HuggingFaceCausalLM
from opencompass.partitioners import NaivePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import FlamesSummarizer
# -------------Inferen Stage ----------------------------------------
with read_base():
from opencompass.configs.datasets.flames.flames_gen import flames_datasets
from opencompass.configs.models.hf_internlm.hf_internlm2_chat_7b import models
datasets = [*flames_datasets]
from opencompass.models import HuggingFaceCausalLM
_meta_template = dict(
round=[
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True),
],
)
models = [
dict(
type=HuggingFaceCausalLM,
abbr='internlm2-chat-7b-hf',
2024-05-14 15:35:58 +08:00
path='internlm/internlm2-chat-7b',
tokenizer_path='internlm/internlm2-chat-7b',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<|im_end|>',
2024-05-14 15:35:58 +08:00
generation_kwargs = {'eos_token_id': [2, 92542], 'do_sample': True},
batch_padding=True,
)
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalRunner,
max_num_workers=256,
task=dict(type=OpenICLInferTask)),
)
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration---------------------------------
2024-04-28 21:54:30 +08:00
internlm1_chat_template = dict(
round=[
dict(role='HUMAN', begin='<|User|>:', end='\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
)
judge_models = [
dict(
type=HuggingFaceCausalLM,
abbr='flames-scorer',
path='CaasiHUANG/flames-scorer',
tokenizer_path='CaasiHUANG/flames-scorer',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
2024-05-14 15:35:58 +08:00
generation_kwargs = {'do_sample': True},
2024-04-28 21:54:30 +08:00
max_out_len=512,
max_seq_len=4096,
batch_size=8,
2024-04-28 21:54:30 +08:00
meta_template=internlm1_chat_template,
run_cfg=dict(num_gpus=1, num_procs=1),
2024-04-28 21:54:30 +08:00
end_str='<eoa>',
)
]
2024-04-28 21:54:30 +08:00
## ------------- Evaluation Configuration----------------
eval = dict(
partitioner=dict(
type=SubjectiveNaivePartitioner,
mode='singlescore',
models = models,
judge_models = judge_models,
),
runner=dict(
type=LocalRunner,
max_num_workers=256,
task=dict(
type=SubjectiveEvalTask
)),
)
summarizer = dict(
type=FlamesSummarizer, judge_type = 'general'
)
2024-05-14 15:35:58 +08:00
work_dir = 'outputs/flames/'