OpenCompass/opencompass/datasets/SeedBench.py

341 lines
12 KiB
Python
Raw Normal View History

2025-04-14 14:23:29 +08:00
import os
import random
import datasets
from typing import List
from .base import BaseDataset
from opencompass.openicl.icl_evaluator.icl_base_evaluator import BaseEvaluator
import numpy as np
import re
import jieba
from rouge_chinese import Rouge
from opencompass.registry import ICL_EVALUATORS, TEXT_POSTPROCESSORS
class SeedBenchDataset(BaseDataset):
@staticmethod
def load(data_files: str, path: str = 'json', split: str = None, **kwargs) -> datasets.Dataset:
dataset = datasets.load_dataset(path, data_files=data_files, **kwargs)
if split is None:
split = list(dataset.keys())[0]
print(f"my datasets split : {split}")
if split not in dataset:
raise ValueError(f"Split '{split}' not found. Available splits: {list(dataset.keys())}")
return dataset[split]
class F1Evaluator(BaseEvaluator):
"""F1 Score evaluator for multiple choice questions.
Args:
seed (int): Seed for randomness, ensuring reproducibility. Defaults to 0.
"""
def __init__(self, seed: int = 0) -> None:
self.seed = seed
super().__init__()
def _preprocess(self, predictions: List, references: List) -> dict:
"""Preprocess the final predictions and references to needed format.
Args:
predictions (List): List of predictions for each sample.
references (List): List of reference answers for each sample.
Returns:
dict: Preprocessed predictions and references in the required format.
"""
return {
'predictions': predictions,
'references': references,
}
def _postprocess(self, scores: dict) -> dict:
"""Postprocess the final score for F1.
Args:
scores (dict): Dictionary of calculated F1 score.
Returns:
dict: Postprocessed F1 score.
"""
return scores
def score(self, predictions: List, references: List) -> dict:
"""Calculate F1 score.
Args:
predictions (List): List of predicted answers for each sample.
references (List): List of reference answers for each sample.
Returns:
dict: Calculated F1 score.
"""
random_state = random.getstate()
np_random_state = np.random.get_state()
details = []
random.seed(self.seed)
np.random.seed(self.seed)
if len(predictions) != len(references):
return {
'error': 'predictions and references have different '
f'length. len(predictions): {len(predictions)}, '
f'len(references): {len(references)}'
}
true_positives = 0
false_positives = 0
false_negatives = 0
for hyp, ref in zip(predictions, references):
hyp = re.sub(r'[^A-Da-d,]+', '', hyp.lower())
ref = re.sub(r'[^A-Da-d,]+', '', ref.lower())
ref_set = set(ref.split(','))
hyp_set = set(hyp.split(','))
ref_set = {r.strip() for r in ref_set}
hyp_set = {h.strip() for h in hyp_set}
sample_tp = len(hyp_set.intersection(ref_set))
sample_fp = len(hyp_set - ref_set)
sample_fn = len(ref_set - hyp_set)
true_positives += sample_tp
false_positives += sample_fp
false_negatives += sample_fn
sample_precision = sample_tp / (sample_tp + sample_fp) if (sample_tp + sample_fp) > 0 else 0
sample_recall = sample_tp / (sample_tp + sample_fn) if (sample_tp + sample_fn) > 0 else 0
sample_f1 = (2 * sample_precision * sample_recall) / (sample_precision + sample_recall) if (sample_precision + sample_recall) > 0 else 0
details.append({'pred': hyp, 'answer': ref, 'correct': sample_f1 * 100})
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
f1 = (2 * precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
result = {
"ours_F1Score": f1 * 100, # 总体 F1 分数
"details": details
}
random.setstate(random_state)
np.random.set_state(np_random_state)
return self._postprocess(result)
@ICL_EVALUATORS.register_module()
class F1ScoreEvaluator(F1Evaluator):
"""F1 Score evaluator for multiple choice questions."""
def __init__(self) -> None:
super().__init__()
# 定义自己的多选后处理逻辑输入回答为ABC ---> A,B,C)
@TEXT_POSTPROCESSORS.register_module('my_multiple_select_postprocess')
def my_multiple_select_postprocess(text: str) -> str:
selected_options = [t for t in text if t.isupper()]
selected_options = sorted(set(selected_options))
res = ', '.join(selected_options)
return res
class AverageRougeEvaluator(BaseEvaluator):
"""Average Rouge Score evaluator for fill-in-the-blank tasks.
Args:
seed (int): Seed for randomness, ensuring reproducibility. Defaults to 0.
"""
def __init__(self, seed: int = 0) -> None:
self.seed = seed
super().__init__()
def _preprocess(self, predictions: List, references: List) -> dict:
"""Preprocess the final predictions and references to needed format.
Args:
predictions (List): List of predictions for each sample.
references (List): List of reference answers for each sample.
Returns:
dict: Preprocessed predictions and references in the required format.
"""
pattern = r"(正确答案[:]|correct answer[:])"
cleaned_predictions = [re.sub(pattern, "", pred, flags=re.IGNORECASE).strip() for pred in predictions]
return {
'predictions': cleaned_predictions,
'references': references,
}
def _postprocess(self, scores: dict) -> dict:
"""Postprocess the final Rouge scores.
Args:
scores (dict): Dictionary of calculated average Rouge scores.
Returns:
dict: Postprocessed Rouge scores.
"""
return scores
def score(self, predictions: List, references: List) -> dict:
"""Calculate average Rouge-L score.
Args:
predictions (List): List of predicted strings for each sample.
references (List): List of reference strings for each sample.
Returns:
dict: Calculated average Rouge-L score.
"""
def rouge_score(hyps, refs):
assert(len(hyps) == len(refs))
hyps = [' '.join(jieba.cut(h)) for h in hyps]
hyps = [h if h.strip() != "" else "无内容" for h in hyps]
refs = [' '.join(jieba.cut(r)) for r in refs]
rouge_scores = Rouge().get_scores(hyps, refs)
rouge_ls = [score["rouge-l"]["f"] for score in rouge_scores]
average_rouge_l = sum(rouge_ls) / len(rouge_ls)
return {"score": average_rouge_l * 100}
random_state = random.getstate()
np_random_state = np.random.get_state()
details = []
random.seed(self.seed)
np.random.seed(self.seed)
if len(predictions) != len(references):
return {
'error': 'predictions and references have different '
f'length. len(predictions): {len(predictions)}, '
f'len(references): {len(references)}'
}
preprocessed_data = self._preprocess(predictions, references)
hyps, refs = preprocessed_data['predictions'], preprocessed_data['references']
scores = []
for i in range(len(hyps)):
refs[i] = refs[i].replace('', ',')
word_level_refs = refs[i].split(',')
word_level_refs = [r.strip() for r in word_level_refs]
if len(word_level_refs) == 1:
word_level_hyps = [hyps[i]]
else:
word_level_hyps = hyps[i].split(',')
word_level_hyps = [h.strip() for h in word_level_hyps]
if len(word_level_hyps) < len(word_level_refs):
word_level_hyps += ['无内容'] * (len(word_level_refs) - len(word_level_hyps))
else:
word_level_hyps = word_level_hyps[:len(word_level_refs)]
sample_score = rouge_score(word_level_hyps, word_level_refs)["score"]
scores.append(sample_score)
details.append({'pred': word_level_hyps, 'answer': word_level_refs, 'correct': sample_score})
average_score = sum(scores) / len(scores)
result = {
"AvgRougeScore": average_score,
"details": details
}
random.setstate(random_state)
np.random.set_state(np_random_state)
return self._postprocess(result)
@ICL_EVALUATORS.register_module()
class AverageRougeScoreEvaluator(AverageRougeEvaluator):
"""Average Rouge Score evaluator."""
def __init__(self) -> None:
super().__init__()
class AccScoreStrEvaluator(BaseEvaluator):
"""Accuracy evaluator based on string matching.
Args:
seed (int): Seed for randomness, ensuring reproducibility. Defaults to 0.
"""
def __init__(self, seed: int = 0) -> None:
self.seed = seed
super().__init__()
def _preprocess(self, predictions: List, references: List) -> dict:
"""Preprocess the final predictions and references to needed format.
Args:
predictions (List): List of predictions for each sample.
references (List): List of reference answers for each sample.
Returns:
dict: Preprocessed predictions and references in the required format.
"""
return {
'predictions': predictions,
'references': references,
}
def _postprocess(self, scores: dict) -> dict:
"""Postprocess the final accuracy score.
Args:
scores (dict): Dictionary of calculated accuracy score.
Returns:
dict: Postprocessed accuracy score.
"""
return scores
def score(self, predictions: List, references: List) -> dict:
"""Calculate accuracy score.
Args:
predictions (List): List of predicted strings for each sample.
references (List): List of reference strings for each sample.
Returns:
dict: Calculated accuracy score.
"""
random_state = random.getstate()
np_random_state = np.random.get_state()
details = []
random.seed(self.seed)
np.random.seed(self.seed)
if len(predictions) != len(references):
return {
'error': 'predictions and references have different '
f'length. len(predictions): {len(predictions)}, '
f'len(references): {len(references)}'
}
preprocessed_data = self._preprocess(predictions, references)
correct = 0
for hyp, ref in zip(preprocessed_data['predictions'], preprocessed_data['references']):
is_correct = 1 if ref.strip().lower() in hyp.strip().lower() else 0
correct += is_correct
details.append({'pred': hyp, 'answer': ref, 'correct': is_correct})
accuracy = correct / len(predictions)
result = {
"ACCStrScore": accuracy * 100,
"details": details
}
random.setstate(random_state)
np.random.set_state(np_random_state)
return self._postprocess(result)
@ICL_EVALUATORS.register_module()
class AccScoreStr_Evaluator(AccScoreStrEvaluator):
"""Accuracy evaluator wrapper for the AccScoreEvaluator."""
def __init__(self) -> None:
super().__init__()