2023-10-07 10:27:48 +08:00
|
|
|
import logging
|
|
|
|
import threading
|
2023-08-10 16:25:11 +08:00
|
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
|
2023-10-07 10:27:48 +08:00
|
|
|
from lmdeploy.serve.turbomind.chatbot import Chatbot
|
|
|
|
|
|
|
|
from opencompass.models.base import BaseModel, LMTemplateParser
|
2023-08-10 16:25:11 +08:00
|
|
|
from opencompass.utils.logging import get_logger
|
|
|
|
from opencompass.utils.prompt import PromptList
|
|
|
|
|
|
|
|
PromptType = Union[PromptList, str]
|
|
|
|
|
|
|
|
|
|
|
|
def valid_str(string, coding='utf-8'):
|
|
|
|
"""decode text according to its encoding type."""
|
|
|
|
invalid_chars = [b'\xef\xbf\xbd']
|
|
|
|
bstr = bytes(string, coding)
|
|
|
|
for invalid_char in invalid_chars:
|
|
|
|
bstr = bstr.replace(invalid_char, b'')
|
|
|
|
ret = bstr.decode(encoding=coding, errors='ignore')
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
class TurboMindModel(BaseModel):
|
|
|
|
"""Model wrapper for TurboMind API.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
path (str): The name of OpenAI's model.
|
|
|
|
model_path (str): folder of the turbomind model's path
|
|
|
|
max_seq_len (int): The maximum allowed sequence length of a model.
|
|
|
|
Note that the length of prompt + generated tokens shall not exceed
|
|
|
|
this value. Defaults to 2048.
|
|
|
|
query_per_second (int): The maximum queries allowed per second
|
|
|
|
between two consecutive calls of the API. Defaults to 1.
|
|
|
|
retry (int): Number of retires if the API call fails. Defaults to 2.
|
|
|
|
meta_template (Dict, optional): The model's meta prompt
|
|
|
|
template if needed, in case the requirement of injecting or
|
|
|
|
wrapping of any meta instructions.
|
|
|
|
"""
|
|
|
|
|
|
|
|
is_api: bool = True
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
path: str,
|
2023-10-07 10:27:48 +08:00
|
|
|
tis_addr: str = '0.0.0.0:33337',
|
2023-08-10 16:25:11 +08:00
|
|
|
max_seq_len: int = 2048,
|
|
|
|
meta_template: Optional[Dict] = None,
|
|
|
|
):
|
|
|
|
|
|
|
|
super().__init__(path=path,
|
|
|
|
max_seq_len=max_seq_len,
|
|
|
|
meta_template=meta_template)
|
|
|
|
self.logger = get_logger()
|
2023-10-07 10:27:48 +08:00
|
|
|
self.template_parser = LMTemplateParser(meta_template)
|
|
|
|
self.eos_token_id = None
|
|
|
|
if meta_template and 'eos_token_id' in meta_template:
|
|
|
|
self.eos_token_id = meta_template['eos_token_id']
|
|
|
|
self.tis_addr = tis_addr
|
2023-08-10 16:25:11 +08:00
|
|
|
|
|
|
|
def generate(
|
|
|
|
self,
|
|
|
|
inputs: List[str or PromptList],
|
|
|
|
max_out_len: int = 512,
|
2023-10-07 10:27:48 +08:00
|
|
|
temperature: float = 1.0,
|
2023-08-10 16:25:11 +08:00
|
|
|
) -> List[str]:
|
|
|
|
"""Generate results given a list of inputs.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
|
|
|
The PromptDict should be organized in OpenCompass'
|
|
|
|
API format.
|
|
|
|
max_out_len (int): The maximum length of the output.
|
|
|
|
temperature (float): What sampling temperature to use,
|
|
|
|
between 0 and 2. Higher values like 0.8 will make the output
|
|
|
|
more random, while lower values like 0.2 will make it more
|
|
|
|
focused and deterministic. Defaults to 0.7.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[str]: A list of generated strings.
|
|
|
|
"""
|
2023-10-07 10:27:48 +08:00
|
|
|
|
2023-08-10 16:25:11 +08:00
|
|
|
with ThreadPoolExecutor() as executor:
|
|
|
|
results = list(
|
2023-10-07 10:27:48 +08:00
|
|
|
executor.map(self._generate, inputs,
|
2023-08-10 16:25:11 +08:00
|
|
|
[max_out_len] * len(inputs),
|
|
|
|
[temperature] * len(inputs)))
|
|
|
|
return results
|
|
|
|
|
|
|
|
def wait(self):
|
|
|
|
"""Wait till the next query can be sent.
|
|
|
|
|
|
|
|
Applicable in both single-thread and multi-thread environments.
|
|
|
|
"""
|
|
|
|
return self.token_bucket.get_token()
|
|
|
|
|
2023-10-07 10:27:48 +08:00
|
|
|
def _generate(self, prompt: str or PromptList, max_out_len: int,
|
2023-08-10 16:25:11 +08:00
|
|
|
temperature: float) -> str:
|
|
|
|
"""Generate results given a list of inputs.
|
|
|
|
|
|
|
|
Args:
|
2023-10-07 10:27:48 +08:00
|
|
|
prompt (str or PromptList): A string or PromptDict.
|
2023-08-10 16:25:11 +08:00
|
|
|
The PromptDict should be organized in OpenCompass'
|
|
|
|
API format.
|
|
|
|
max_out_len (int): The maximum length of the output.
|
|
|
|
temperature (float): What sampling temperature to use,
|
|
|
|
between 0 and 2. Higher values like 0.8 will make the output
|
|
|
|
more random, while lower values like 0.2 will make it more
|
|
|
|
focused and deterministic.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
str: The generated string.
|
|
|
|
"""
|
|
|
|
assert type(
|
2023-10-07 10:27:48 +08:00
|
|
|
prompt) is str, 'We only support string for TurboMind RPC API'
|
|
|
|
chatbot = Chatbot(self.tis_addr,
|
|
|
|
temperature=temperature,
|
|
|
|
capability='completion',
|
|
|
|
top_k=1,
|
|
|
|
log_level=logging.ERROR)
|
|
|
|
|
|
|
|
for status, text, n_token in chatbot.stream_infer(
|
|
|
|
session_id=threading.currentThread().ident,
|
|
|
|
prompt=prompt,
|
|
|
|
request_output_len=max_out_len,
|
|
|
|
sequence_start=True,
|
|
|
|
sequence_end=True):
|
|
|
|
continue
|
|
|
|
response = valid_str(text)
|
|
|
|
response = response.replace('<eoa>', '')
|
2023-08-10 16:25:11 +08:00
|
|
|
return response
|