OpenCompass/docs/zh_cn/get_started/installation.md

76 lines
2.7 KiB
Markdown
Raw Normal View History

# 安装
1. 准备 OpenCompass 运行环境:
```bash
conda create --name opencompass python=3.10 pytorch torchvision pytorch-cuda -c nvidia -c pytorch -y
conda activate opencompass
```
如果你希望自定义 PyTorch 版本或相关的 CUDA 版本,请参考 [官方文档](https://pytorch.org/get-started/locally/) 准备 PyTorch 环境。需要注意的是OpenCompass 要求 `pytorch>=1.13`
2. 安装 OpenCompass
```bash
git clone https://github.com/open-compass/opencompass.git
cd opencompass
pip install -e .
```
3. 安装 humaneval可选
如果你需要**在 humaneval 数据集上评估模型代码能力**,请执行此步骤,否则忽略这一步。
<details>
<summary><b>点击查看详细</b></summary>
```bash
git clone https://github.com/openai/human-eval.git
cd human-eval
pip install -r requirements.txt
pip install -e .
cd ..
```
请仔细阅读 `human_eval/execution.py` **第48-57行**的注释,了解执行模型生成的代码可能存在的风险,如果接受这些风险,请取消**第58行**的注释,启用代码执行评测。
</details>
4. 安装 Llama可选
如果你需要**使用官方实现评测 Llama / Llama-2 / Llama-2-chat 模型**,请执行此步骤,否则忽略这一步。
<details>
<summary><b>点击查看详细</b></summary>
```bash
git clone https://github.com/facebookresearch/llama.git
cd llama
pip install -r requirements.txt
pip install -e .
cd ..
```
你可以在 `configs/models` 下找到所有 Llama / Llama-2 / Llama-2-chat 模型的配置文件示例。([示例](https://github.com/open-compass/opencompass/blob/eb4822a94d624a4e16db03adeb7a59bbd10c2012/configs/models/llama2_7b_chat.py))
</details>
# 数据集准备
OpenCompass 支持的数据集主要包括两个部分:
1. Huggingface 数据集: [Huggingface Dataset](https://huggingface.co/datasets) 提供了大量的数据集,这部分数据集运行时会**自动下载**。
2. 自建以及第三方数据集OpenCompass 还提供了一些第三方数据集及自建**中文**数据集。运行以下命令**手动下载解压**。
在 OpenCompass 项目根目录下运行下面命令,将数据集准备至 `${OpenCompass}/data` 目录下:
```bash
wget https://github.com/open-compass/opencompass/releases/download/0.1.1/OpenCompassData.zip
unzip OpenCompassData.zip
```
OpenCompass 已经支持了大多数常用于性能比较的数据集,具体支持的数据集列表请直接在 `configs/datasets` 下进行查找。
接下来,你可以阅读[快速上手](./quick_start.md)了解 OpenCompass 的基本用法。