mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
133 lines
4.8 KiB
Python
133 lines
4.8 KiB
Python
![]() |
from mmengine.config import read_base
|
||
|
|
||
|
with read_base():
|
||
|
from opencompass.configs.datasets.subjective.compass_arena_subjective_bench.singleturn.pairwise_bt_judge import (
|
||
|
compassarena_subjectivebench_bradleyterry_singleturn_datasets,
|
||
|
)
|
||
|
from opencompass.configs.datasets.subjective.compass_arena_subjective_bench.multiturn.pairwise_bt_judge import (
|
||
|
compassarena_subjectivebench_bradleyterry_multiturn_datasets,
|
||
|
)
|
||
|
|
||
|
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import (
|
||
|
models as lmdeploy_internlm2_5_7b_chat,
|
||
|
)
|
||
|
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_20b_chat import (
|
||
|
models as lmdeploy_internlm2_5_20b_chat,
|
||
|
)
|
||
|
from opencompass.configs.models.hf_llama.lmdeploy_llama3_1_8b_instruct import (
|
||
|
models as lmdeploy_llama3_1_8b_instruct,
|
||
|
)
|
||
|
from opencompass.configs.models.hf_llama.lmdeploy_llama3_1_70b_instruct import (
|
||
|
models as lmdeploy_llama3_1_70b_instruct,
|
||
|
)
|
||
|
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_0_5b_instruct import (
|
||
|
models as lmdeploy_qwen2_5_0_5b_instruct,
|
||
|
)
|
||
|
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_1_5b_instruct import (
|
||
|
models as lmdeploy_qwen2_5_1_5b_instruct,
|
||
|
)
|
||
|
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_3b_instruct import (
|
||
|
models as lmdeploy_qwen2_5_3b_instruct,
|
||
|
)
|
||
|
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_7b_instruct import (
|
||
|
models as lmdeploy_qwen2_5_7b_instruct,
|
||
|
)
|
||
|
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_14b_instruct import (
|
||
|
models as lmdeploy_qwen2_5_14b_instruct,
|
||
|
)
|
||
|
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_32b_instruct import (
|
||
|
models as lmdeploy_qwen2_5_32b_instruct,
|
||
|
)
|
||
|
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_72b_instruct import (
|
||
|
models as lmdeploy_qwen2_5_72b_instruct,
|
||
|
)
|
||
|
from opencompass.configs.models.qwen.lmdeploy_qwen2_7b_instruct import (
|
||
|
models as lmdeploy_qwen2_7b_instruct,
|
||
|
)
|
||
|
|
||
|
from opencompass.models import (
|
||
|
HuggingFace,
|
||
|
HuggingFaceCausalLM,
|
||
|
HuggingFaceChatGLM3,
|
||
|
OpenAI,
|
||
|
TurboMindModelwithChatTemplate,
|
||
|
)
|
||
|
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
||
|
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
||
|
from opencompass.partitioners.sub_num_worker import SubjectiveNumWorkerPartitioner
|
||
|
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
|
||
|
from opencompass.runners import LocalRunner, SlurmSequentialRunner
|
||
|
from opencompass.summarizers import CompassArenaBradleyTerrySummarizer
|
||
|
from opencompass.tasks import OpenICLInferTask
|
||
|
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
||
|
|
||
|
api_meta_template = dict(
|
||
|
round=[
|
||
|
dict(role='HUMAN', api_role='HUMAN'),
|
||
|
dict(role='BOT', api_role='BOT', generate=True),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
# -------------Inference Stage ----------------------------------------
|
||
|
models = [
|
||
|
*lmdeploy_qwen2_5_14b_instruct,
|
||
|
*lmdeploy_qwen2_5_32b_instruct,
|
||
|
*lmdeploy_qwen2_5_7b_instruct,
|
||
|
*lmdeploy_qwen2_7b_instruct,
|
||
|
]
|
||
|
|
||
|
datasets = [
|
||
|
*compassarena_subjectivebench_bradleyterry_singleturn_datasets,
|
||
|
*compassarena_subjectivebench_bradleyterry_multiturn_datasets,
|
||
|
]
|
||
|
|
||
|
infer = dict(
|
||
|
partitioner=dict(type=NaivePartitioner),
|
||
|
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLInferTask)),
|
||
|
)
|
||
|
# -------------Evalation Stage ----------------------------------------
|
||
|
|
||
|
## ------------- JudgeLLM Configuration
|
||
|
judge_models = [
|
||
|
dict(
|
||
|
type=TurboMindModelwithChatTemplate,
|
||
|
abbr='CompassJudger-1-32B-Instruct',
|
||
|
path='opencompass/CompassJudger-1-32B-Instruct',
|
||
|
engine_config=dict(session_len=16384, max_batch_size=16, tp=4),
|
||
|
gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=2048),
|
||
|
max_seq_len=16384,
|
||
|
max_out_len=2048,
|
||
|
batch_size=16,
|
||
|
run_cfg=dict(num_gpus=4),
|
||
|
)
|
||
|
]
|
||
|
|
||
|
## ------------- Evaluation Configuration
|
||
|
eval = dict(
|
||
|
partitioner=dict(
|
||
|
type=SubjectiveNaivePartitioner,
|
||
|
models=models,
|
||
|
judge_models=judge_models,
|
||
|
),
|
||
|
runner=dict(
|
||
|
type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)
|
||
|
),
|
||
|
)
|
||
|
|
||
|
## ------------- Summary Configuration
|
||
|
# This step fits a Bradley-Terry model (statistical model) with an option
|
||
|
# to include style features and control variables based on groups
|
||
|
# (group variables must be available in the input dataset for each observation).
|
||
|
summarizer = dict(
|
||
|
type=CompassArenaBradleyTerrySummarizer,
|
||
|
rating_system='bradleyterry',
|
||
|
num_bootstrap=100,
|
||
|
num_cpu=None,
|
||
|
with_control_vars=True,
|
||
|
normalize_style_features=False,
|
||
|
odds_ratio=True,
|
||
|
groups=['difficulty', 'category'],
|
||
|
)
|
||
|
|
||
|
work_dir = 'outputs/compassarena_subjectivebench_bradleyterry/'
|