mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
69 lines
2.2 KiB
Python
69 lines
2.2 KiB
Python
![]() |
import re
|
|||
|
from typing import List
|
|||
|
|
|||
|
from datasets import Dataset, DatasetDict, load_dataset
|
|||
|
|
|||
|
from opencompass.datasets.base import BaseDataset
|
|||
|
from opencompass.registry import LOAD_DATASET
|
|||
|
|
|||
|
# 预编译的多选题正则,按 PEP-8 每行 < 79 字符
|
|||
|
_PATTERN_MC = (
|
|||
|
r'^(?P<stem>.*?)' # 题干
|
|||
|
r'(?:A\.)\s*(?P<A>.*?)\s*' # 选项 A
|
|||
|
r'B\.\s*(?P<B>.*?)\s*' # 选项 B
|
|||
|
r'C\.\s*(?P<C>.*?)\s*' # 选项 C
|
|||
|
r'D\.\s*(?P<D>.*?)' # 选项 D
|
|||
|
r'Answer:' # 答案分隔符
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
@LOAD_DATASET.register_module()
|
|||
|
class SciEvalDataset(BaseDataset):
|
|||
|
"""多选题子集,支持所有类别(可选指定 category 过滤)"""
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def load(path: str, name: str, **kwargs) -> DatasetDict:
|
|||
|
# 如果传入 category,则仅保留该类别,否则包含所有类别
|
|||
|
category = kwargs.get('category')
|
|||
|
dataset: DatasetDict = DatasetDict()
|
|||
|
|
|||
|
for split in ('test', ):
|
|||
|
raw_iter = load_dataset(
|
|||
|
path,
|
|||
|
name=name,
|
|||
|
split=split,
|
|||
|
streaming=True,
|
|||
|
)
|
|||
|
examples: List[dict] = []
|
|||
|
|
|||
|
for ex in raw_iter:
|
|||
|
# 仅保留多选题
|
|||
|
if ex.get('type') != 'multiple-choice':
|
|||
|
continue
|
|||
|
# 如指定了 category,则进行过滤
|
|||
|
if category is not None \
|
|||
|
and ex.get('category') != category:
|
|||
|
continue
|
|||
|
|
|||
|
ans_list = (ex.get('answer') or ex.get('answers') or [])
|
|||
|
if not ans_list:
|
|||
|
continue
|
|||
|
target = ans_list[0]
|
|||
|
|
|||
|
match = re.search(_PATTERN_MC, ex.get('question', ''), re.S)
|
|||
|
if not match:
|
|||
|
continue
|
|||
|
|
|||
|
examples.append({
|
|||
|
'input': match.group('stem').strip(),
|
|||
|
'A': match.group('A').strip(),
|
|||
|
'B': match.group('B').strip(),
|
|||
|
'C': match.group('C').strip(),
|
|||
|
'D': match.group('D').strip(),
|
|||
|
'target': target,
|
|||
|
})
|
|||
|
|
|||
|
dataset[split] = Dataset.from_list(examples)
|
|||
|
|
|||
|
return dataset
|