OpenCompass/examples/eval_subjective_bradleyterry.py

121 lines
4.2 KiB
Python
Raw Normal View History

from mmengine.config import read_base
with read_base():
from opencompass.configs.datasets.subjective.alpaca_eval.alpacav2_judgeby_gpt4_bradleyterry import (
alpacav2_datasets, )
from opencompass.configs.datasets.subjective.arena_hard.arena_hard_compare_bradleyterry import (
arenahard_datasets, )
from opencompass.configs.datasets.subjective.compassarena.compassarena_compare_bradleyterry import (
compassarena_datasets, )
from opencompass.configs.datasets.subjective.wildbench.wildbench_pair_judge_bradleyterry import (
wildbench_datasets, )
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import (
models as lmdeploy_internlm2_5_7b_chat, )
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_20b_chat import (
models as lmdeploy_internlm2_5_20b_chat, )
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_7b_instruct import (
models as lmdeploy_qwen2_5_7b_instruct, )
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_14b_instruct import (
models as lmdeploy_qwen2_5_14b_instruct, )
from opencompass.configs.models.qwen.lmdeploy_qwen2_7b_instruct import (
models as lmdeploy_qwen2_7b_instruct, )
from opencompass.models import (HuggingFace, HuggingFaceCausalLM,
HuggingFaceChatGLM3, OpenAI,
TurboMindModelwithChatTemplate)
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_num_worker import \
SubjectiveNumWorkerPartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner, SlurmSequentialRunner
from opencompass.summarizers import (CompassArenaBradleyTerrySummarizer,
SubjectiveSummarizer)
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
api_meta_template = dict(round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
])
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
*lmdeploy_internlm2_5_7b_chat,
*lmdeploy_internlm2_5_20b_chat,
*lmdeploy_qwen2_5_14b_instruct,
*lmdeploy_qwen2_5_7b_instruct,
*lmdeploy_qwen2_7b_instruct,
]
datasets = [
*alpacav2_datasets,
*arenahard_datasets,
*compassarena_datasets,
*wildbench_datasets,
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(type=LocalRunner,
max_num_workers=16,
task=dict(type=OpenICLInferTask)),
)
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='CompassJudger-1-32B-Instruct',
path='opencompass/CompassJudger-1-32B-Instruct',
engine_config=dict(session_len=16384, max_batch_size=16, tp=4),
gen_config=dict(top_k=1,
temperature=1e-6,
top_p=0.9,
max_new_tokens=2048),
max_seq_len=16384,
max_out_len=2048,
batch_size=16,
run_cfg=dict(num_gpus=4),
)
]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=SubjectiveNaivePartitioner,
models=models,
judge_models=judge_models,
),
runner=dict(type=LocalRunner,
max_num_workers=16,
task=dict(type=SubjectiveEvalTask)),
)
## ------------- Summary Configuration
# This step fits a Bradley-Terry model (statistical model) with an option
# to include style features and control variables based on groups
# (group variables must be available in the input dataset for each observation).
summarizer = dict(
type=CompassArenaBradleyTerrySummarizer,
rating_system='bradleyterry',
report_pred_win_rates=True,
num_bootstrap=100,
num_cpu=None,
with_control_vars=True,
normalize_style_features=False,
odds_ratio=True,
)
work_dir = 'outputs/subjective/bradleyterry'