mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
56 lines
1.9 KiB
Python
56 lines
1.9 KiB
Python
![]() |
from mmengine.config import read_base
|
||
|
|
||
|
from opencompass.models.turbomind import TurboMindModel
|
||
|
|
||
|
with read_base():
|
||
|
# choose a list of datasets
|
||
|
from opencompass.configs.datasets.ceval.ceval_gen_5f30c7 import \
|
||
|
ceval_datasets
|
||
|
from opencompass.configs.datasets.gsm8k.gsm8k_gen_1d7fe4 import \
|
||
|
gsm8k_datasets
|
||
|
from opencompass.configs.datasets.humaneval.humaneval_gen_8e312c import \
|
||
|
humaneval_datasets
|
||
|
from opencompass.configs.datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
|
||
|
from opencompass.configs.datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import \
|
||
|
WiC_datasets
|
||
|
from opencompass.configs.datasets.triviaqa.triviaqa_gen_2121ce import \
|
||
|
triviaqa_datasets
|
||
|
# and output the results in a choosen format
|
||
|
from opencompass.configs.summarizers.medium import summarizer
|
||
|
|
||
|
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
|
||
|
|
||
|
# # config for internlm-7b model
|
||
|
internlm_7b = dict(
|
||
|
type=TurboMindModel,
|
||
|
abbr='internlm-7b-turbomind',
|
||
|
path='internlm/internlm-7b',
|
||
|
engine_config=dict(session_len=2048,
|
||
|
max_batch_size=32,
|
||
|
rope_scaling_factor=1.0),
|
||
|
gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100),
|
||
|
max_out_len=100,
|
||
|
max_seq_len=2048,
|
||
|
batch_size=32,
|
||
|
concurrency=32,
|
||
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
||
|
)
|
||
|
|
||
|
# config for internlm-20b model
|
||
|
internlm_20b = dict(
|
||
|
type=TurboMindModel,
|
||
|
abbr='internlm-20b-turbomind',
|
||
|
path='internlm/internlm-20b',
|
||
|
engine_config=dict(session_len=2048,
|
||
|
max_batch_size=8,
|
||
|
rope_scaling_factor=1.0),
|
||
|
gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100),
|
||
|
max_out_len=100,
|
||
|
max_seq_len=2048,
|
||
|
batch_size=8,
|
||
|
concurrency=8,
|
||
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
||
|
)
|
||
|
|
||
|
models = [internlm_20b]
|