OpenCompass/examples/eval_internlm_lmdeploy_apiserver.py

44 lines
1.4 KiB
Python
Raw Normal View History

from mmengine.config import read_base
from opencompass.models.turbomind_api import TurboMindAPIModel
with read_base():
# choose a list of datasets
from opencompass.configs.datasets.ceval.ceval_gen_5f30c7 import \
ceval_datasets
from opencompass.configs.datasets.gsm8k.gsm8k_gen_1d7fe4 import \
gsm8k_datasets
from opencompass.configs.datasets.humaneval.humaneval_gen_8e312c import \
humaneval_datasets
from opencompass.configs.datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from opencompass.configs.datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import \
WiC_datasets
from opencompass.configs.datasets.triviaqa.triviaqa_gen_2121ce import \
triviaqa_datasets
# and output the results in a choosen format
from opencompass.configs.summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
internlm_chat_20b = dict(
type=TurboMindAPIModel,
abbr='internlm-chat-20b-turbomind',
api_addr='http://0.0.0.0:23333',
max_out_len=100,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
internlm_chat_7b = dict(
type=TurboMindAPIModel,
abbr='internlm-chat-7b-turbomind',
api_addr='http://0.0.0.0:23333',
max_out_len=100,
max_seq_len=2048,
batch_size=16,
run_cfg=dict(num_gpus=1, num_procs=1),
)
models = [internlm_chat_20b]