OpenCompass/examples/eval_chinese_simpleqa.py

74 lines
2.2 KiB
Python
Raw Normal View History

from mmengine.config import read_base
with read_base():
from opencompass.configs.datasets.chinese_simpleqa.chinese_simpleqa_gen import csimpleqa_datasets
from opencompass.models import HuggingFacewithChatTemplate
from opencompass.models.openai_api import OpenAI
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.summarizers import DefaultSubjectiveSummarizer
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
# -------------Inference Stage ----------------------------------------
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='Qwen2.5-1.5B-Instruct',
path='Qwen/Qwen2.5-1.5B-Instruct',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(do_sample=True, ),
max_out_len=200,
max_seq_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
datasets = sum([v for k, v in locals().items() if ('datasets' in k)], [])
summarizer = dict(type=DefaultSubjectiveSummarizer)
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
api_meta_template = dict(round=[
dict(role='SYSTEM', api_role='SYSTEM'),
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
])
judge_models = [
dict(
# GPT4o
abbr='gpt-4o-0513-global',
type=OpenAI,
# gpt-4o
path='gpt-4o-0513-global',
key='xxx', # provide OPENAI_API_KEY
meta_template=api_meta_template,
query_per_second=16,
max_out_len=1000,
batch_size=8,
retry=3)
]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(type=SubjectiveNaivePartitioner,
models=models,
judge_models=judge_models),
runner=dict(type=LocalRunner,
max_num_workers=16,
task=dict(type=SubjectiveEvalTask)),
)
work_dir = 'outputs/chinese_simpleqa/'