2023-09-06 18:42:19 +08:00
|
|
|
class QwenVLMMBenchPromptConstructor:
|
|
|
|
"""MMBench prompt constructor for Qwen-VL.
|
|
|
|
|
|
|
|
The output is a dict following the input format of Qwen-VL tokenizer.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self) -> None:
|
|
|
|
pass
|
|
|
|
|
2023-09-19 19:08:44 +08:00
|
|
|
def __call__(self, inputs: dict) -> list:
|
2023-09-06 18:42:19 +08:00
|
|
|
data_samples = inputs['data_samples']
|
|
|
|
assert len(data_samples) == 1
|
|
|
|
data_sample = data_samples[0]
|
|
|
|
question = data_sample.get('question')
|
|
|
|
options = data_sample.get('options')
|
|
|
|
context = data_sample.get('context')
|
|
|
|
if context is not None:
|
|
|
|
prompt = context + ' ' + question + ' ' + options
|
|
|
|
else:
|
|
|
|
prompt = question + ' ' + options
|
|
|
|
format_input = [
|
|
|
|
{
|
|
|
|
'image': 'This_is_path_to_an_image.'
|
|
|
|
}, # Just placeholder for Image Tokens
|
|
|
|
{
|
|
|
|
'text': prompt
|
|
|
|
},
|
|
|
|
]
|
|
|
|
return format_input
|
2023-09-19 19:08:44 +08:00
|
|
|
|
|
|
|
|
|
|
|
class QwenVLChatPromptConstructor:
|
|
|
|
"""Prompt constructorfor Qwen-VL-Chat."""
|
|
|
|
|
|
|
|
def __init__(self, prompt='') -> None:
|
|
|
|
self.prompt = prompt
|
|
|
|
|
|
|
|
def __call__(self, inputs: dict) -> list:
|
|
|
|
assert len(inputs['data_samples']) == 1
|
|
|
|
format_input = [
|
|
|
|
{
|
|
|
|
'image': 'This_is_path_to_an_image.'
|
|
|
|
}, # Just placeholder for Image Tokens
|
|
|
|
{
|
|
|
|
'text': self.prompt
|
|
|
|
},
|
|
|
|
]
|
|
|
|
return format_input
|
|
|
|
|
|
|
|
|
|
|
|
class QwenVLChatVQAPromptConstructor:
|
|
|
|
"""VQA prompt constructor for Qwen-VL-Chat."""
|
|
|
|
|
|
|
|
def __init__(self, prompt='') -> None:
|
|
|
|
self.prompt = prompt
|
|
|
|
|
|
|
|
def __call__(self, inputs: dict) -> list:
|
|
|
|
data_samples = inputs['data_samples']
|
|
|
|
assert len(data_samples) == 1
|
|
|
|
data_sample = data_samples[0]
|
|
|
|
question = data_sample.get('question')
|
|
|
|
format_input = [
|
|
|
|
{
|
|
|
|
'image': 'This_is_path_to_an_image.'
|
|
|
|
}, # Just placeholder for Image Tokens
|
|
|
|
{
|
|
|
|
'text': question + self.prompt
|
|
|
|
},
|
|
|
|
]
|
|
|
|
return format_input
|
|
|
|
|
|
|
|
|
|
|
|
class QwenVLChatScienceQAPromptConstructor:
|
|
|
|
"""ScienceQA prompt constructor for Qwen-VL-Chat."""
|
|
|
|
choice_mapping = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}
|
|
|
|
|
|
|
|
def __init__(self, prompt='') -> None:
|
|
|
|
self.prompt = prompt
|
|
|
|
|
|
|
|
def __call__(self, inputs: dict) -> list:
|
|
|
|
data_samples = inputs['data_samples']
|
|
|
|
assert len(data_samples) == 1
|
|
|
|
data_sample = data_samples[0]
|
|
|
|
question = data_sample.get('question')
|
|
|
|
choices = data_sample.get('choices')
|
|
|
|
choices = [
|
|
|
|
f'({self.choice_mapping[i]}) ' + item
|
|
|
|
for i, item in enumerate(choices)
|
|
|
|
]
|
|
|
|
choices = 'Choices: ' + ' '.join(choices) + '\n'
|
|
|
|
contexts = 'Context: ' + data_sample.get('hint')
|
|
|
|
format_input = [
|
|
|
|
{
|
|
|
|
'image': 'This_is_path_to_an_image.'
|
|
|
|
}, # Just placeholder for Image Tokens
|
|
|
|
{
|
|
|
|
'text': contexts + question + choices + self.prompt
|
|
|
|
},
|
|
|
|
]
|
|
|
|
return format_input
|