mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
251 lines
10 KiB
Python
251 lines
10 KiB
Python
![]() |
import argparse
|
|||
|
import getpass
|
|||
|
import os
|
|||
|
import os.path as osp
|
|||
|
from datetime import datetime
|
|||
|
|
|||
|
from mmengine.config import Config
|
|||
|
|
|||
|
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
|||
|
from opencompass.runners import DLCRunner, LocalRunner, SlurmRunner
|
|||
|
from opencompass.utils import LarkReporter, Summarizer, get_logger
|
|||
|
|
|||
|
|
|||
|
def parse_args():
|
|||
|
parser = argparse.ArgumentParser(description='Run an evaluation task')
|
|||
|
parser.add_argument('config', help='Train config file path')
|
|||
|
# add mutually exclusive args `--slurm` `--dlc`, default to local runner
|
|||
|
luach_method = parser.add_mutually_exclusive_group()
|
|||
|
luach_method.add_argument('--slurm',
|
|||
|
action='store_true',
|
|||
|
default=False,
|
|||
|
help='Whether to use srun to launch tasks, if '
|
|||
|
'True, `--partition(-p)` must be set. Defaults'
|
|||
|
' to False')
|
|||
|
luach_method.add_argument('--dlc',
|
|||
|
action='store_true',
|
|||
|
default=False,
|
|||
|
help='Whether to use dlc to launch tasks, if '
|
|||
|
'True, `--aliyun-cfg` must be set. Defaults'
|
|||
|
' to False')
|
|||
|
# add general args
|
|||
|
parser.add_argument('--debug',
|
|||
|
help='Debug mode, in which scheduler will run tasks '
|
|||
|
'in the single process, and output will not be '
|
|||
|
'redirected to files',
|
|||
|
action='store_true',
|
|||
|
default=False)
|
|||
|
parser.add_argument('-m',
|
|||
|
'--mode',
|
|||
|
help='Running mode. You can choose "infer" if you '
|
|||
|
'only want the inference results, or "eval" if you '
|
|||
|
'already have the results and want to evaluate them, '
|
|||
|
'or "viz" if you want to visualize the results.',
|
|||
|
choices=['all', 'infer', 'eval', 'viz'],
|
|||
|
default='all',
|
|||
|
type=str)
|
|||
|
parser.add_argument('-r',
|
|||
|
'--reuse',
|
|||
|
nargs='?',
|
|||
|
type=str,
|
|||
|
const='latest',
|
|||
|
help='Reuse previous outputs & results, and run any '
|
|||
|
'missing jobs presented in the config. If its '
|
|||
|
'argument is not specified, the latest results in '
|
|||
|
'the work_dir will be reused. The argument should '
|
|||
|
'also be a specific timestamp, e.g. 20230516_144254'),
|
|||
|
parser.add_argument('-w',
|
|||
|
'--work-dir',
|
|||
|
help='Work path, all the outputs will be saved in '
|
|||
|
'this path, including the slurm logs, the evaluation'
|
|||
|
' results, the summary results, etc. If not specified,'
|
|||
|
' the work_dir will be set to None',
|
|||
|
default=None,
|
|||
|
type=str)
|
|||
|
parser.add_argument('-l',
|
|||
|
'--lark',
|
|||
|
help='Report the running status to lark bot',
|
|||
|
action='store_true',
|
|||
|
default=False)
|
|||
|
parser.add_argument('--max-partition-size',
|
|||
|
help='The maximum size of a task.',
|
|||
|
type=int,
|
|||
|
default=2000),
|
|||
|
parser.add_argument(
|
|||
|
'--gen-task-coef',
|
|||
|
help='The dataset cost measurement coefficient for generation tasks',
|
|||
|
type=int,
|
|||
|
default=20)
|
|||
|
parser.add_argument('--max-num-workers',
|
|||
|
help='Max number of workers to run in parallel.',
|
|||
|
type=int,
|
|||
|
default=32)
|
|||
|
parser.add_argument(
|
|||
|
'--retry',
|
|||
|
help='Number of retries if the job failed when using slurm or dlc.',
|
|||
|
type=int,
|
|||
|
default=2)
|
|||
|
# set srun args
|
|||
|
slurm_parser = parser.add_argument_group('slurm_args')
|
|||
|
parse_slurm_args(slurm_parser)
|
|||
|
# set dlc args
|
|||
|
dlc_parser = parser.add_argument_group('dlc_args')
|
|||
|
parse_dlc_args(dlc_parser)
|
|||
|
args = parser.parse_args()
|
|||
|
if args.slurm:
|
|||
|
assert args.partition is not None, (
|
|||
|
'--partition(-p) must be set if you want to use slurm')
|
|||
|
if args.dlc:
|
|||
|
assert os.path.exists(args.aliyun_cfg), (
|
|||
|
'When luaching tasks using dlc, it needs to be configured'
|
|||
|
'in "~/.aliyun.cfg", or use "--aliyun-cfg $ALiYun-CFG_Path"'
|
|||
|
' to specify a new path.')
|
|||
|
return args
|
|||
|
|
|||
|
|
|||
|
def parse_slurm_args(slurm_parser):
|
|||
|
"""these args are all for slurm launch."""
|
|||
|
slurm_parser.add_argument('-p',
|
|||
|
'--partition',
|
|||
|
help='Slurm partition name',
|
|||
|
default=None,
|
|||
|
type=str)
|
|||
|
slurm_parser.add_argument('-q',
|
|||
|
'--quotatype',
|
|||
|
help='Slurm quota type',
|
|||
|
default='auto',
|
|||
|
type=str)
|
|||
|
|
|||
|
|
|||
|
def parse_dlc_args(dlc_parser):
|
|||
|
"""these args are all for dlc launch."""
|
|||
|
dlc_parser.add_argument('--aliyun-cfg',
|
|||
|
help='The config path for aliyun config',
|
|||
|
default='~/.aliyun.cfg',
|
|||
|
type=str)
|
|||
|
|
|||
|
|
|||
|
def main():
|
|||
|
args = parse_args()
|
|||
|
|
|||
|
# initialize logger
|
|||
|
logger = get_logger(log_level='DEBUG' if args.debug else 'INFO')
|
|||
|
|
|||
|
cfg = Config.fromfile(args.config)
|
|||
|
if args.work_dir is not None:
|
|||
|
cfg['work_dir'] = args.work_dir
|
|||
|
else:
|
|||
|
cfg.setdefault('work_dir', './outputs/default/')
|
|||
|
|
|||
|
# cfg_time_str defaults to the current time
|
|||
|
cfg_time_str = dir_time_str = datetime.now().strftime('%Y%m%d_%H%M%S')
|
|||
|
if args.reuse:
|
|||
|
if args.reuse == 'latest':
|
|||
|
dirs = os.listdir(cfg.work_dir)
|
|||
|
assert len(dirs) > 0, 'No previous results to reuse!'
|
|||
|
dir_time_str = sorted(dirs)[-1]
|
|||
|
else:
|
|||
|
dir_time_str = args.reuse
|
|||
|
logger.info(f'Reusing experiements from {dir_time_str}')
|
|||
|
elif args.mode in ['eval', 'viz']:
|
|||
|
raise ValueError('You must specify -r or --reuse when running in eval '
|
|||
|
'or viz mode!')
|
|||
|
|
|||
|
# update "actual" work_dir
|
|||
|
cfg['work_dir'] = osp.join(cfg.work_dir, dir_time_str)
|
|||
|
os.makedirs(osp.join(cfg.work_dir, 'configs'), exist_ok=True)
|
|||
|
|
|||
|
# dump config
|
|||
|
output_config_path = osp.join(cfg.work_dir, 'configs',
|
|||
|
f'{cfg_time_str}.py')
|
|||
|
cfg.dump(output_config_path)
|
|||
|
# Config is intentally reloaded here to avoid initialized
|
|||
|
# types cannot be serialized
|
|||
|
cfg = Config.fromfile(output_config_path)
|
|||
|
|
|||
|
# report to lark bot if specify --lark
|
|||
|
if not args.lark:
|
|||
|
cfg['lark_bot_url'] = None
|
|||
|
elif cfg.get('lark_bot_url', None):
|
|||
|
content = f'{getpass.getuser()}\'s task has been launched!'
|
|||
|
LarkReporter(cfg['lark_bot_url']).post(content)
|
|||
|
|
|||
|
if args.mode in ['all', 'infer']:
|
|||
|
# Use SizePartitioner to split into subtasks
|
|||
|
partitioner = SizePartitioner(osp.join(cfg['work_dir'],
|
|||
|
'predictions/'),
|
|||
|
max_task_size=args.max_partition_size,
|
|||
|
gen_task_coef=args.gen_task_coef)
|
|||
|
tasks = partitioner(cfg)
|
|||
|
# execute the infer subtasks
|
|||
|
exec_infer_runner(tasks, args, cfg)
|
|||
|
|
|||
|
# evaluate
|
|||
|
if args.mode in ['all', 'eval']:
|
|||
|
# Use NaivePartitioner,not split
|
|||
|
partitioner = NaivePartitioner(osp.join(cfg['work_dir'], 'results/'))
|
|||
|
tasks = partitioner(cfg)
|
|||
|
# execute the eval tasks
|
|||
|
exec_eval_runner(tasks, args, cfg)
|
|||
|
|
|||
|
# visualize
|
|||
|
if args.mode in ['all', 'eval', 'viz']:
|
|||
|
summarizer = Summarizer(cfg)
|
|||
|
summarizer.summarize(time_str=cfg_time_str)
|
|||
|
|
|||
|
|
|||
|
def exec_infer_runner(tasks, args, cfg):
|
|||
|
"""execute infer runner according to args."""
|
|||
|
if args.slurm:
|
|||
|
runner = SlurmRunner(dict(type='OpenICLInferTask'),
|
|||
|
max_num_workers=args.max_num_workers,
|
|||
|
partition=args.partition,
|
|||
|
quotatype=args.quotatype,
|
|||
|
retry=args.retry,
|
|||
|
debug=args.debug,
|
|||
|
lark_bot_url=cfg['lark_bot_url'])
|
|||
|
elif args.dlc:
|
|||
|
runner = DLCRunner(dict(type='OpenICLInferTask'),
|
|||
|
max_num_workers=args.max_num_workers,
|
|||
|
aliyun_cfg=Config.fromfile(args.aliyun_cfg),
|
|||
|
retry=args.retry,
|
|||
|
debug=args.debug,
|
|||
|
lark_bot_url=cfg['lark_bot_url'])
|
|||
|
else:
|
|||
|
runner = LocalRunner(
|
|||
|
task=dict(type='OpenICLInferTask'),
|
|||
|
# max_num_workers = args.max_num_workers,
|
|||
|
debug=args.debug,
|
|||
|
lark_bot_url=cfg['lark_bot_url'])
|
|||
|
runner(tasks)
|
|||
|
|
|||
|
|
|||
|
def exec_eval_runner(tasks, args, cfg):
|
|||
|
"""execute infer runner according to args."""
|
|||
|
if args.slurm:
|
|||
|
runner = SlurmRunner(dict(type='OpenICLEvalTask'),
|
|||
|
max_num_workers=args.max_num_workers,
|
|||
|
partition=args.partition,
|
|||
|
quotatype=args.quotatype,
|
|||
|
retry=args.retry,
|
|||
|
debug=args.debug,
|
|||
|
lark_bot_url=cfg['lark_bot_url'])
|
|||
|
elif args.dlc:
|
|||
|
runner = DLCRunner(dict(type='OpenICLEvalTask'),
|
|||
|
max_num_workers=args.max_num_workers,
|
|||
|
aliyun_cfg=Config.fromfile(args.aliyun_cfg),
|
|||
|
retry=args.retry,
|
|||
|
debug=args.debug,
|
|||
|
lark_bot_url=cfg['lark_bot_url'])
|
|||
|
else:
|
|||
|
runner = LocalRunner(
|
|||
|
task=dict(type='OpenICLEvalTask'),
|
|||
|
# max_num_workers = args.max_num_workers,
|
|||
|
debug=args.debug,
|
|||
|
lark_bot_url=cfg['lark_bot_url'])
|
|||
|
runner(tasks)
|
|||
|
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
main()
|