mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
59 lines
1.8 KiB
Python
59 lines
1.8 KiB
Python
![]() |
import csv
|
||
|
import os.path as osp
|
||
|
import re
|
||
|
|
||
|
from datasets import Dataset, DatasetDict
|
||
|
|
||
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
||
|
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
|
||
|
from opencompass.utils.text_postprocessors import general_postprocess
|
||
|
|
||
|
from .base import BaseDataset
|
||
|
|
||
|
|
||
|
@LOAD_DATASET.register_module()
|
||
|
class NaturalQuestionDataset(BaseDataset):
|
||
|
|
||
|
@staticmethod
|
||
|
def load(path: str):
|
||
|
dataset = DatasetDict()
|
||
|
for split in ['dev', 'test']:
|
||
|
filename = osp.join(path, f'nq-{split}.qa.csv')
|
||
|
with open(filename) as f:
|
||
|
reader = csv.reader(f, delimiter='\t')
|
||
|
raw_data = []
|
||
|
for row in reader:
|
||
|
assert len(row) == 2
|
||
|
question = row[0]
|
||
|
answers = eval(row[1])
|
||
|
if split == 'dev':
|
||
|
answers = answers[0]
|
||
|
raw_data.append({'question': question, 'answer': answers})
|
||
|
dataset[split] = Dataset.from_list(raw_data)
|
||
|
|
||
|
return dataset
|
||
|
|
||
|
|
||
|
@ICL_EVALUATORS.register_module()
|
||
|
class NQEvaluator(BaseEvaluator):
|
||
|
|
||
|
def score(self, predictions, references):
|
||
|
if len(predictions) != len(references):
|
||
|
return {
|
||
|
'error': 'predictions and references have different '
|
||
|
'length'
|
||
|
}
|
||
|
predictions = [
|
||
|
re.split(r'[\n]', prediction, 1)[0].lower()
|
||
|
for prediction in predictions
|
||
|
]
|
||
|
processed_answers = [[general_postprocess(j).lower() for j in i]
|
||
|
for i in references]
|
||
|
|
||
|
cnt = 0
|
||
|
for pred, cand_ans in zip(predictions, processed_answers):
|
||
|
cnt += int(any([cand in pred for cand in cand_ans]))
|
||
|
score = cnt / len(predictions) * 100
|
||
|
|
||
|
return {'score': score}
|