OpenCompass/opencompass/datasets/lambada.py

49 lines
1.4 KiB
Python
Raw Normal View History

2023-07-04 21:34:55 +08:00
import re
import string
from datasets import DatasetDict, load_dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from opencompass.utils.text_postprocessors import general_postprocess
from .base import BaseDataset
@LOAD_DATASET.register_module()
class lambadaDataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs, split='test')
def preprocess(example):
prompt, target = example['text'].strip().rsplit(' ', 1)
example['prompt'] = prompt
example['label'] = target
return example
dataset = dataset.map(preprocess)
return DatasetDict({'test': dataset})
@ICL_EVALUATORS.register_module()
class LambadaEvaluator(BaseEvaluator):
def __init__(self) -> None:
super().__init__()
def score(self, predictions, references):
if len(predictions) != len(references):
return {
'error': 'predictions and references have different '
'length'
}
score = 0.0
for pred, refer in zip(predictions, references):
pred = pred.strip().split(' ')[0]
pred = re.split(f'[{string.punctuation}]', pred)[0]
score += general_postprocess(pred) == general_postprocess(refer)
score = 100.0 * score / len(predictions)
return dict(accuracy=score)